

AS/400 Advanced Series IBM

REXX/400 Programmer’s Guide
Version 4

 SC41-5728-00

AS/400 Advanced Series IBM

REXX/400 Programmer’s Guide
Version 4

 SC41-5728-00

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

First Edition (August 1997)

This edition applies to the licensed program Operating System/400, (Program 5769-SS1), Version 4 Release 1 Modification 0, and to
all subsequent releases and modifications until otherwise indicated in new editions.

Make sure that you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. If you live in the United States, Puerto
Rico, or Guam, you can order publications through the IBM Software Manufacturing Solutions at 800+879-2755. Publications are not
stocked at the address given below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication. You can also mail
your comments to the following address:

IBM Corporation
Attention Department 542
IDCLERK
3605 Highway 52 N
Rochester, MN 55901-7829 USA

or you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192

If you have access to Internet, you can send your comments electronically to IDCLERK@RCHVMW2.VNET.IBM.COM; IBMMAIL, to
IBMMAIL(USIB56RZ).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Programming Interface Information . viii
Trademarks . viii

About REXX/400 Programmer’s Guide . ix
Who Should Read This Book . ix
What You Should Know before Reading This Book ix
What This Book Contains . ix
Prerequisite and Related Information . ix
Information Available on the World Wide Web . x

Chapter 1. Using REXX on the AS/400 System 1
Using REXX on the AS/400 System . 1
Learning About ... 1

An Interpreted Language . 1
Free Format . 1
Variables Without Type . 2
Built-in Functions . 2
Parsing . 2
How to Determine and Correct Programming Errors 2

REXX and Systems Application Architecture . 2
Understanding the AS/400 System Security . 3

Chapter 2. Writing and Running REXX Programs 5
Understanding the Parts of a REXX Program . 5

Using Clauses . 5
Understanding REXX Source Entry . 8

Using REXX Source Type in Source Entry . 9
Using REXX Programs as Source File Members 9
Understanding REXX as an Interpreted Language 10

Running REXX Programs . 10
Using the Start REXX Procedure Command 10
Running REXX Programs by Using User-Defined Commands With REXX . 11
Using the Program Development Manager (PDM) Work with Members

Option . 11
Starting REXX from a Program . 12

Using REXX Files . 12
Using the Integrated Language Environment (ILE) Session Manager 12
Using the SAY and PULL Keyword Instructions 14

Using Interactive Mode . 14
Using Batch Mode . 16

Chapter 3. Using Variables . 17
Understanding Variables and Constants . 17

Using Constants . 17
Using Variables . 17

Using Compound Symbols . 20
Stems and Tails . 20
Derived Names . 21
Arrays . 23

 Copyright IBM Corp. 1997 iii

Using Variables in Programs, Functions, and Subroutines 26
Using Special Variables . 26
Using the SYMBOL Function . 27
Using the PROCEDURE Instruction . 27

Chapter 4. Using REXX Expressions . 31
Using Terms and Operators . 31

Using Arithmetic Operators . 32
Using String Operators . 37
Using Comparison Operators . 39
Using Logical Operators . 41

Using Function Calls as Expressions . 43
Using Expressions in Instructions . 44
Using Expressions as Commands . 44

Chapter 5. Using REXX Instructions . 45
Learning About Keyword Instructions . 45
Using Structured Programming . 45

Using Branches . 46
Using Loops . 50

Understanding Programming Style . 57
Using the INTERPRET Instruction . 58
Using a REXX Program Instead of a CL Program 59

Chapter 6. Using REXX Parsing Techniques 61
Understanding Parsing . 61

Using the PARSE Instruction . 61
Using Templates . 64
Using Placeholders . 65
Parsing Variables and Expressions . 65
Using Special Parsing Techniques . 66
Using Parsing in a Program . 68

Parsing With Patterns . 69
Using Literal Patterns . 69
Using Positional Patterns . 70
Using Variables in Patterns . 71

Using String Functions . 72
Managing Strings . 72
Measuring Strings . 74

Chapter 7. Understanding Commands and Command Environments . . . 79
Understanding Commands . 79

Understanding Clause Interpretation . 79
Understanding Command Environments . 80

Understanding Messages . 81
Understanding Return Codes . 82

Understanding the Error and Failure Conditions 85
Understanding CL Command Environment Conditions 85
Understanding CPICOMM and EXECSQL Command Environment Conditions 86
Understanding User-Defined Command Environment Conditions 86
Understanding the Control Language (CL) Command Environment 86

Chapter 8. Using REXX Functions and Subroutines 99
Understanding Functions and Subroutines . 99

iv REXX/400 Programmer’s Guide V4R1

Understanding the Differences Between Functions and Subroutines 100
Using Internal Routines . 100
Using External Routines . 101

Understanding External Routines Written in REXX 101
Understanding External Routines Written in Other Languages 101

Accessing Parameters . 102
Returning Results . 103
Understanding the Function Search Order . 103
Using REXX Built-in Functions . 104

Using the ADDRESS Built-in Function . 105
Using the DATE Built-in Function . 105
Using the ERRORTEXT Built-in Function 105
Using the FORMAT Built-in Function . 105
Using the MAX and MIN Built-in Functions 106
Using the SETMSGRC Built-in Function . 106
Using the SOURCELINE Built-in Function 109
Using the TIME Built-in Function . 109

Understanding Conversion Functions . 111
Understanding Data Formats . 111
Using Conversion Functions . 111

Chapter 9. Using the REXX External Data Queue 115
Learning About the REXX External Data Queue 115
Using the REXX Queue Services on the AS/400 System 115

Starting Queuing Services . 116
Understanding Queue Management Instructions 116

Using the PUSH Instruction . 116
Using the QUEUE Instruction . 116
Using the PULL Instruction . 119
Using the Add REXX Buffer (ADDREXBUF) Command 119
Using the Remove REXX Buffer (RMVREXBUF) Command 120

Chapter 10. Determining Problems with REXX Programs 123
Using the TRACE Instruction and the TRACE Function 123

Using Interactive Tracing . 124
Using Trace Settings . 124
Interpreting Trace Results . 128

Using the Trace REXX (TRCREX) Command 129

Chapter 11. Understanding Condition Trapping 131
Defining Conditions . 131
Defining Condition Traps . 132
Using Condition Trapping . 133

Trapping Multiple Conditions . 136

Appendix A. REXX Keywords . 137

Appendix B. REXX Built-in Functions . 139

Appendix C. Double-Byte Character Set Support 141

Appendix D. Operators and Order of Operations 143
Operators . 143
Order of Operations . 145

 Contents v

Appendix E. Sample REXX Programs . 147

Appendix F. Sample REXX Programs for the AS/400 System 157

Appendix G. Communication Between REXX/400 and ILE/C 175
Calling an ILE/C Program From REXX . 175

Calling ILE/C as an External Subroutine . 175
Calling ILE/C as an External Function . 176
Calling ILE/C as a Command Environment 176
Calling ILE/C with the CL CALL Command 178

Passing Parameters and Control to ILE/C . 179
Calling External Subroutines and Functions 179
Calling a Command Environment . 180
Using the CL CALL Command . 180
Using the REXX External Data Queue . 180

Receiving Parameters in an ILE/C Program 181
Calling ILE/C Programs as External Functions or Subroutines 181
Calling ILE/C Programs as Command Environments 182
Calling ILE/C Programs with the CL CALL Command 183
Receiving Parameters from the REXX External Data Queue 183

Returning Results and Return Codes from ILE/C Programs 184
Returning Results with the Variable Pool Interface 185
Returning Results from the CL Command Environment 191
Returning Results in the REXX External Data Queue 193

Example Using the REXX External Data Queue 194

Appendix H. Communication Between REXX/400 and Other Languages 199
Using the REXX External Data Queue API . 199

Pushing Data from RPG into the Queue . 199
Updating the File from the Queue by RPG 200
Pushing Data from COBOL into the Queue 204

Overriding STDIN and STDOUT . 206

Appendix I. String Manipulation in REXX versus CL 211
Searching for a String Pattern . 211
Extracting Words from a String . 211
Concatenation with Numeric Variables . 213

Glossary . 219

Bibliography . 225

Index . 227

vi REXX/400 Programmer’s Guide V4R1

 Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or service may be used.
Subject to IBM's valid intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those expressly designated by IBM,
are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact the software
interoperability coordinator. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

Address your questions to:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N
Rochester, MN 55901-7829 USA

This publication could contain technical inaccuracies or typographical errors.

This publication may refer to products that are announced but not currently available in your country. This
publication may also refer to products that have not been announced in your country. IBM makes no
commitment to make available any unannounced products referred to herein. The final decision to
announce any product is based on IBM's business and technical judgment.

This publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

This publication contains small programs that are furnished by IBM as simple examples to provide an
illustration. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. All programs contained herein
are provided to you "AS IS". THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

 Copyright IBM Corp. 1997 vii

Programming Interface Information
This REXX/400 Programmer’s Guide is intended to help you write programs using the AS/400 REXX
interpreter. This REXX/400 Programmer’s Guide documents General-Use Programming Interface and
Associated Guidance Information provided by AS/400.

General-Use programming interfaces allow you to write programs that use the services of AS/400 REXX.

 Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of Microsoft
Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be
trademarks or service marks of others.

Application System/400 Operating System/400

AS/400 OS/2

BookManager OS/400

DB2 Personal System/2

DB2/400 PS/2

IBMLink SAA

Integrated Language Environment SQL/400

Library Reader Systems Application Architecture

Operating System/2

viii REXX/400 Programmer’s Guide V4R1

About REXX/400 Programmer’s Guide

This guide provides a wide-range discussion of programming with the IBM REXX
for AS/400 system (also known as REXX/400). Its primary purpose is to provide
useful programming information and examples to those who are new to REXX/400
and to provide those who have used REXX in other computing environments with
information about the REXX/400 implementation.

This guide may refer to products that are announced, but are not yet available.

In the back of this book is a glossary and an index. Use the glossary to find the
meaning of an unfamiliar term. Use the index to look up a topic and to see on
which pages the topic is covered.

Who Should Read This Book
This guide is intended for the AS/400 system or application programmer, who
wants to learn how to use REXX on the AS/400. While using the control language
(CL) with REXX is discussed, much of the material in this guide applies to the
system in general and may be used by programmers of all high-level languages
supported by the AS/400 system.

What You Should Know before Reading This Book
Before using this guide, you should be familiar with general programming concepts
and terminology, and have a general understanding of OS/400 and the AS/400
system. For more information about REXX, the REXX/400 Reference provides
detail on all REXX instructions, functions, input and output, parsing, and application
interfaces.

What This Book Contains
You will be introduced to the REstructured eXtended eXecutor (REXX) language.
In addition, you will learn about the following:

� Contents of a REXX program, rules of syntax and substitution, and the use of
variables

� How to write expressions, use conversations, enter AS/400 commands, control
your program, and construct and design your REXX programs

� Examples of REXX programs. .

Prerequisite and Related Information
For information about other AS/400 publications (except Advanced 36), see either
of the following:

� The Publications Reference book, SC41-5003, in the AS/400 Softcopy Library.
� The AS/400 Information Directory, a unique, multimedia interface to a

searchable database that contains descriptions of titles available from IBM or
from selected other publishers. The AS/400 Information Directory is shipped
with the OS/400 operating system at no charge.

 Copyright IBM Corp. 1997 ix

Information Available on the World Wide Web
More AS/400 information is available on the World Wide Web. You can access this
information from the AS/400 home page, which is at the following uniform resource
locator (URL) address:

http://www.as4ðð.ibm.com

Select the Information Desk, and you will be able to access a variety of AS/400
information topics from that page.

x REXX/400 Programmer’s Guide V4R1

Chapter 1. Using REXX on the AS/400 System

Using REXX on the AS/400 System
As part of Operating System/400 (OS/400), REXX adds programming capabilities
as a command processing language and an applications programming language.
REXX, or the Restructured EXtended eXecutor language, is a procedural language
for the Application System/400 (AS/400) system. REXX programs can reduce long,
complex, or repetitious tasks to a single action.

REXX provides both an alternative to using Control Language (CL) programs and a
way to expand CL.

� REXX provides a full set of structured programming instructions like DO...END
and IF...THEN...ELSE. These instructions are discussed in Chapter 5, “Using
REXX Instructions” on page 45.

� REXX can be used with other command environments it recognizes. These
languages can be provided by the system, as CL is, or provided by the user
within the rules which must be followed for REXX to find and recognize them.
The interaction between REXX and CL is discussed in Chapter 7,
“Understanding Commands and Command Environments” on page 79.
User-defined interaction is discussed in the REXX/400 Reference.

Learning About ...
REXX is different from most of the programming languages currently available for
the AS/400 system. Some of these differences, as well as some of the functional
characteristics of REXX, are described here.

An Interpreted Language
The REXX language is an interpreted language. When a REXX program runs, the
language processor directly interprets each language statement. Languages that
are not interpreted must be compiled into a program object before they are run.

 Free Format
REXX has only a few rules about programming format. This allows freedom and
flexibility in program format. A single instruction can span many lines or multiple
instructions can be entered on a single line. Instructions can begin in any column.
Spaces or entire lines can be skipped. Instructions can be typed in uppercase,
lowercase, or mixed case. REXX does not require line numbering.

 Copyright IBM Corp. 1997 1

Variables Without Type
REXX regards all data as character strings. REXX does not require that variables
or arrays be declared as strings or numbers, where CL requires (*CHAR) or (*DEC).
REXX will perform arithmetic on any string that represents a valid number, including
those in exponential formats. REXX variables are discussed in Chapter 3, “Using
Variables” on page 17.

 Built-in Functions
REXX supplies built-in functions that perform various processing, searching, and
comparison operations for both text and numbers. Other built-in functions provide
formatting capabilities and arithmetic calculations. The REXX functions are
discussed in “Using REXX Built-in Functions” on page 104.

 Parsing
REXX includes extensive capabilities for working with character strings. Parsing
input lets you easily assign variables from different input sources and manage the
flow of information through your REXX program. REXX parsing is discussed in
Chapter 6, “Using REXX Parsing Techniques” on page 61.

How to Determine and Correct Programming Errors
When a REXX program contains an error, messages with meaningful explanations
are shown on the display. In addition, the TRACE instruction provides a powerful
tool for determining problems in your REXX program. A complete description of
these tools is provided in Chapter 10, “Determining Problems with REXX
Programs” on page 123.

REXX and Systems Application Architecture
REXX/400 is one of the programming languages included in the IBM Systems
Application Architecture (SAA). SAA is a framework of standards and definitions
intended to promote consistency among different IBM products. Programs written
in REXX according to SAA specifications are portable to all other SAA computing
environments including the VM, TSO/E or IBM Operating System/2 (OS/2)
computing environment, as long as system-specific instructions, functions or
commands are not used.

To learn more about working with REXX in SAA supported computing
environments, see the SAA Common Programming Interface REXX Level 2
Reference.

REXX/400, referred to in this book as REXX, is the SAA implementation on the
AS/400 system. Occasionally, in this book, you will see the term REXX/400 used.
If you are familiar with REXX in other computing environments, you should note
that this term identifies an option available only to REXX on the AS/400 system.

2 REXX/400 Programmer’s Guide V4R1

Understanding the AS/400 System Security
Security of REXX programs is managed at a source file level. For more information
on AS/400 system security, see the Security – Reference book.

 Chapter 1. Using REXX on the AS/400 System 3

4 REXX/400 Programmer’s Guide V4R1

Chapter 2. Writing and Running REXX Programs

Writing and running a REXX program occurs in two steps:

1. Enter the source for the REXX program,
2. Run the REXX interpreter against the source.

This chapter covers the following topics:

� Understanding the Parts of a REXX Program
� Understanding REXX Source Entry
� Running REXX Programs
� Using REXX Files
� Using the ILE Session Manager
� Using the SAY and PULL Keyword Instructions.

Understanding the Parts of a REXX Program
REXX programs are made up of clauses. There are many types of clauses, which
are described here.

 Using Clauses
The source statements which make up a REXX program, called clauses, can be:

 � Null clauses
 � Assignments
 � Instructions
 � Labels
 � Commands.

Programs written in REXX are composed of clauses made up of tokens, which are
character strings separated by blanks or by the nature of the tokens themselves.
Conceptually, each clause is scanned from left to right before processing, and the
tokens composing it are identified. Instruction keywords are recognized at this
stage, comments are removed, and multiple blanks (except within literal strings) are
converted to single blanks. Blanks adjacent to special characters are also
removed.

REXX uses several types of delimiters:

� Tokens are delimited by blank spaces.

� Comments begin with /* and end with */.

� Clauses are delimited by a semicolon, which is implied by line ending, certain
keywords or a colon if it follows a single symbol.

For more information on delimiters, see the REXX/400 Reference.

The following sections discuss using instructions, labels, and commands. The
other two clause types, nulls and assignments are defined here.

Null Clauses A clause that is empty (a blank line) or consists only of
blanks or comments is called a null clause. REXX ignores all
null clauses. Although not required by REXX/400, you
should make the first line of your REXX program a comment.
This identifies it as a REXX program in other SAA computing

 Copyright IBM Corp. 1997 5

environments. Comments can appear anywhere in a
program, and are delimited by /* and */ as in the following:

/\ This is a comment \/

Assignments Assignments are clauses which assign values to variables.
An assignment usually takes the form:

symbol = expression

Assignments are discussed in “Assigning Variables” on
page 18.

 Using Instructions
Clauses that begin with the keywords REXX recognizes are instructions. These
keywords are recognized by REXX by their context. For example, when the word
SAY is the first word in a clause, and is not followed by any equal sign or a colon,
it is recognized as an instruction. The word SAY could appear anywhere in a literal
string and not be interpreted as an instruction. This interpretation process is
discussed in further detail in “Understanding REXX as an Interpreted Language” on
page 10.

Certain keyword instructions, such as the IF instruction, may be made up of more
than one clause. In this case, each clause begins with a REXX keyword, which
becomes reserved. A complete list of the REXX reserved keyword instructions is
contained in Appendix A, “REXX Keywords” on page 137. The keyword
instructions are defined in the REXX/400 Reference.

Here is a simple REXX program which shows some of the types of source
statements.

/\ Name verification program \/

SAY "Good morning. Please enter your name."

PULL who

IF who = " " THEN SAY "Good morning stranger."

ELSE SAY "Good morning" who"."

This sample program consists of five source statements. It uses the SAY, PULL,
and IF instructions which are detailed in “Using the SAY and PULL Keyword
Instructions” on page 14 and “Using Structured Programming” on page 45. The
types of clauses which make up this program are:

 1. /\...\/

The first clause of this program is a comment explaining the contents of the
program. All REXX programs which will be used in SAA computing
environments must start with a comment. First line comments are not required
for REXX/400 programs, but are recommended as a REXX programming
convention and a good programming standard. Comments are ignored as the
program is interpreted, but are important in the documentation of the program.

 2. SAY

The second clause of this program is a keyword instruction, SAY, that shows
text on the ILE Session Manager display.

3. "Good morning. Please enter your name."

Anything in quotation marks is shown just as it is. This is called a literal string.

6 REXX/400 Programmer’s Guide V4R1

 4. PULL

PULL is a keyword instruction which reads and holds the response entered by
the program's user. This is the third clause.

 5. who

A variable, which gives a name to the place where the user's response is
stored.

 6. IF

The fourth clause begins with the IF instruction to test a condition.

7. who = " "

This is the condition to be tested. It asks the question "is the variable who
empty?"

 8. THEN

This tells REXX to proceed with the instruction that follows, if the tested
condition is true.

9. SAY "Good morning stranger."

This shows Good morning stranger., if the condition who = " " is true.

10. ELSE

This final clause gives an alternative direction to run the instruction that follows,
if the tested condition is not true.

11. SAY "Good morning" who"."

This shows Good morning, followed by the value stored in who, if the tested
condition is not true.

Using Functions and Subroutines
Internal functions, subroutines, and condition traps are indicated by clauses called
labels. Labels are symbols that mark positions or portions of a program. They are
distinguished by a trailing colon (for example, ERROR:). Other than their use with
the CALL and SIGNAL instructions and for internal function calls, they are regarded
as null clauses. Unlike null and instruction clauses, labels do not require trailing
delimiters, such as semicolons or line endings, to separate them from other
clauses.

The following program shows how internal functions and subroutines are used.
The routine called SUM returns the sum of two numbers passed to it.

input1 = 2 /\ Set two numbers to use as input.\/

input2 = 3

CALL Sum input1, input2 /\ Call SUM as a subroutine. \/

/\ The parameters are not put \/

/\ inside parentheses. \/

/\ Subroutine calls assign the \/

/\ return value to a variable \/

/\ called result. \/

/\ Here the sum is written out the \/

/\ first time. \/

 Chapter 2. Writing and Running REXX Programs 7

SAY 'The sum of' input1 'and' input2 'is' result

/\ Now call SUM as a function. \/

/\ This time the parameters are \/

/\ in parentheses, and the variable\/

/\ result is not touched. \/

SAY 'The sum of' input1 'and' input2 'is' Sum(input1, input2)

EXIT

Sum: /\ Here is the internal routine. \/

total = ARG(1) + ARG(2) /\ ARG is a built-in function \/

/\ accesses the parameters passed \/

/\ to an internal routine, or to \/

/\ the main REXX program. \/

RETURN total

 Using Commands
Commands are clauses that are run by other programs. A command is simply an
expression which is passed to the current command environment. By default,
REXX/400 sends commands to the CL command environment for processing.
Commands and command environments are described further in Chapter 7,
“Understanding Commands and Command Environments” on page 79.

The following program shows how CL commands are issued from a REXX
program. The program provides a value for the library parameter for the Display
Library (DSPLIB) command, if one is not specified when the program is run.

ARG libname /\ Get the parameter (if any). \/

IF libname='' THEN libname="MYLIB" /\ If none provided, make the \/

/\ parameter "MYLIB". \/

"DSPLIB "libname /\ Issue the DSPLIB command. \/

EXIT

Understanding REXX Source Entry
The source for a REXX program can be entered using the source entry tool you
choose. The Source Entry Utility (SEU) supports the REXX source type. For more
information about using SEU, see the ADTS/400: Source Entry Utility.

If you are familiar with SEU, you should be aware of three differences between
entering REXX source and entering source for other languages. These are:

� Prompting assistance for REXX statements is not available.

� REXX syntax is not checked during source entry.

� Prompting for CL commands within members with the source type REXX is not
available.

If you do not have a source file and library, use the Create Library (CRTLIB)
command to create a library for your source files. Use the Create Source Physical
File (CRTSRCPF) command to create a source file for REXX programs. QREXSRC
is an IBM-supplied file in the QGPL library for REXX source.

8 REXX/400 Programmer’s Guide V4R1

Using REXX Source Type in Source Entry
The source type REXX can be used so source members that contain REXX
programs are easily identified. The REXX source type is supported by SEU. Use
of the REXX source type is not required. REXX will run with any source member
regardless of source type.

Using the REXX source type, REXX provides efficiencies in running the REXX
program. These efficiencies are not available with any other source type. When a
REXX program is run, the source from the member is first converted into an
internal form. The program is then run by using this internal form. When the
source type is REXX, the internal form is saved in the associated space of the
source member. Thus, it is available to use the next time the program is run.
When the source type is not REXX, the internal form is also created but is not
saved. In this case, each time the program is run, the internal form is created.

It should be noted that the internal form is not directly usable. REXX is responsible
for maintaining the internal form and for ensuring that the internal form is kept up to
date with the actual source. REXX will automatically rebuild the internal form after
the source is updated. If the SEU is used, the internal form will be rebuilt as part of
the SEU run, after the source member updates are saved.

When the source type is REXX, actions such as Delete File or Remove Member
will not only effect the source member but also the internal form. When the source
member is removed, the internal form associated with that member is also
removed. When the source file is deleted, the internal form associated with any
member of source type REXX will also be deleted. In addition, if the source type of
an existing member is changed from REXX to some other type, the internal form is
deleted.

When the source type is REXX and the REXX program is run, the internal form is
used directly from the associated space by the REXX interpreter. As a result, the
internal form does not increase the resources required to run the program. When
the source type is not REXX, the internal form is created from the source
dynamically when the REXX program is run. The internal form is saved for the
duration of the run within the resources that are allocated to the REXX interpreter.
As a result, in this case the internal form increases the amount of resources that
are required to run the REXX program. Because there is a maximum amount of
resources that can be allocated to the REXX interpreter, the space requirements to
hold the internal form will reduce the space that will be available for other purposes,
such as space to hold variables. If the source type is changed from REXX to
something else, it is possible that a very large REXX program could now require
resources beyond the maximum that is permitted. That is, changing the source
type from REXX can cause a REXX program, that ran successfully before the
source type change, to no longer run.

Using REXX Programs as Source File Members
REXX programs are not program objects. REXX programs are run from the source
file. No compiling is necessary.

You should group REXX members by their security requirements, since security is
established on the source file, not individual source members. A user with authority
to the source file will have access to all of the members within it. Note that where
line numbers are referred to in REXX programs, the line number used is the

 Chapter 2. Writing and Running REXX Programs 9

relative line number. Sequence numbers are ignored by REXX. To make it easier
to find lines, use the resequence option when you exit from SEU.

Understanding REXX as an Interpreted Language
The REXX interpreter works on your REXX program, clause by clause and token
by token, doing what you have written.

How the tokens and clauses are interpreted depends on how they are used. This
is how REXX interprets source statements.

� Tokens placed between /* and */ are comments. They are ignored by the
interpreter.

� Tokens placed between quotation marks are literal strings. They are used
exactly as written, without any further interpretation.

� A single token followed by an equal sign is interpreted to be an assignment.
The token is assigned the value following the equal sign.

� A token immediately followed by a colon is interpreted to be a label, indicating
a portion of the program which will include an internal function, subroutine, or
condition trap.

� A clause which begins with a keyword, as listed in Appendix A, “REXX
Keywords” on page 137, is interpreted as an instruction. REXX expects to
perform the task indicated by the instruction.

� A completely blank line or a line consisting only of a semicolon is a null clause.

� Anything that is not an instruction, assignment, label, or null clause is
interpreted as a command. Commands are passed to the current command
environment unless otherwise indicated. See Chapter 7, “Understanding
Commands and Command Environments” on page 79 for more information.

Running REXX Programs
REXX programs can be run, and the interpreter called, by:

� Using the Start REXX Procedure (STRREXPRC) command

� Using a REXX program as the command processing program (CPP) for a
command

� Using the Work with Members option of the Program Development Manager

� Calling the QREXX application program interface (API).

Using the Start REXX Procedure Command
The Start REXX Procedure (STRREXPRC) command starts the REXX interpreter for
a specific REXX program. The STRREXPRC command can be issued from
anywhere a CL command can be issued. This is a way to run a REXX procedure
from a CL program (the other way is CALL QREXX in the QSYS library, see page
12 for more information).

For information on the syntax for this command and where you can run it, see the
CL Reference.

The PARM parameter of STRREXPRC passes an argument string to the REXX
program. The REXX program can subdivide the string using the ARG or PARSE

10 REXX/400 Programmer’s Guide V4R1

ARG instructions within the program itself. You should make certain that the string
is entered in a way that can be parsed by the receiving REXX program. You
should also be aware that because the string is being entered by a CL command,
CL rules for folding data will apply. To prevent folding, you should use quotation
marks around the data. The quotation marks will not be passed to the REXX
program. The REXX program will receive an exact image of the string entered for
this parameter, unless the string is folded. For more information on using the ARG
and PARSE ARG instructions, see “Using PARSE ARG” on page 62.

The PARM parameter lets you pass up to 3000 characters. Only the characters
actually specified are passed.

Each time the STRREXPRC command is called, the REXX interpreter is restarted
with the parameters specified.

Running REXX Programs by Using User-Defined Commands With
REXX

REXX programs can be used as command processing programs (CPP) for CL
commands. In this case you will see the following differences from the
STRREXPRC command:

� The initial command environment and system exit programs can only be
specified when the command is created using the Create Command (CRTCMD)
command or changed using the Change Command (CHGCMD) command.

� The command may define separate parameters as needed. Each input is
passed as one argument string.

� Even though each parameter is defined individually by the command, when the
command is run all parameter values are concatenated together to form one
argument to the REXX program. The order in which the values are
concatenated is determined by the order of the parameters as defined by the
command.

Most command definition functions are available. For more information on
command definition and command definition objects (CDO), see the CL
Programming.

The input argument string which is passed to the REXX program will be built from
the user input and, potentially, the command itself. It is built in CL keyword format.
The maximum length of the string is 5,989 characters including values, keywords,
and punctuation. The ARG or PARSE ARG instructions may be used within the
REXX program to parse the input string. For more information on keyword format
and building the input string, see “Using Literal Patterns” on page 69.

Using the Program Development Manager (PDM) Work with Members
Option

The Program Development Manager (PDM) Work with Members display includes an
option to allow the REXX interpreter to be run against a member. Since REXX
programs are not program objects, the REXX interpreter cannot be started from the
PDM Work with Objects display.

 Chapter 2. Writing and Running REXX Programs 11

Starting REXX from a Program
The REXX interpreter can be called by a program through the calling mechanism of
the programming language that was used to write that program. The call is made
to the QREXX program. The requirements for using this calling procedure are
found in the REXX/400 Reference.

Using REXX Files
A REXX program has access to two files for input and output operations. One file
is available for input, STDIN. One file is available for output, STDOUT. A second
output file, STDERR, is used by the interpreter to write error messages and trace
information. The following table shows the files, the instruction which uses each
file, and the default settings for each of these files in interactive and batch mode.

The interpreter controls the opening and closing of STDIN, STDOUT, and
STDERR.

You can redirect both STDIN and STDOUT, by using the CL override commands,
in order to work with other than the defaults. If you use an override command for
this purpose, the overridden file name must be specified as STDIN or STDOUT.
Override commands must be issued before the REXX program uses these files.
Overrides after a REXX program uses a file will not redirect STDIN or STDOUT.
For more information, see “Overriding STDIN and STDOUT” on page 206.

File Used by Default in Interactive Default in Batch

STDIN PULL Keyboard QINLINE

STDOUT SAY Display QPRINT

STDERR TRACE Display QPRINT

Using the Integrated Language Environment (ILE) Session Manager
When STDIN is assigned to the keyboard and STDOUT is assigned to the display
station, operations are controlled by the Integrated Language Environment (ILE)
Session Manager and not through usual display file data management. This is the
default for interactive jobs.

The ILE Session Manager supports:

� Paging backward and forward
� Input retrieval with F9
� Exit with F3
� End-of-file signalling with F4
� Print the scroller with F6
� Scroll to the top with F17
� Scroll to the bottom with F18
� Scroll to the left with F19
� Scroll to the right with F20
� Issue commands from the user window with F21
� Output of characters below '40'X.

Here is a simple program which routes output to the display station:

12 REXX/400 Programmer’s Guide V4R1

/\ REXX example \/

SAY 'This will be displayed on the Terminal Session'

This is what will appear on your terminal session:

à ð

This will be displayed on the Terminal Session

Press ENTER to end terminal session.

 ==> ___

3=Exit F4=End of File F6=Print F9=Retrieve F17=Top

 18=Bottom F19=Left F2ð=Right F21=User Window

á ñ

When the program finishes the session manager sends an implicit read to the
display station. You will see the message, Press ENTER to end terminal session.

From this display, you can page through the session screens. When you press the
Enter key, the session manager closes the session and sends the message, End of

terminal session.

 Chapter 2. Writing and Running REXX Programs 13

If you run multiple programs which all print to the display station interactively, all the
session information is kept. If the program EXAMPLE is run again, the session is as
follows:

à ð

This will be displayed on the Terminal Session

Press ENTER to end terminal session.

This will be displayed on the Terminal Session

Press ENTER to end terminal session.

 ==> ___

3=Exit F4=End of File F6=Print F9=Retrieve F17=Top

 18=Bottom F19=Left F2ð=Right F21=User Window

á ñ

As seen in the displays, input and output from all programs that use the ILE
Session Manager is kept.

Using the SAY and PULL Keyword Instructions
The SAY and PULL instructions are used by REXX to allow for input from STDIN
and output to STDOUT. These instructions allow you to create a dialogue between
user input and REXX processing. In interactive mode, REXX uses line mode
processing.

SAY The SAY instruction writes data. Output from the SAY instruction is
directed to STDOUT.

PULL The PULL instruction reads from the REXX external data queue. If the
queue is empty, PULL reads from STDIN. The maximum length of a
line placed on the REXX external data queue is 32,767 bytes.

Note: Even if there are items on the REXX external data queue, PARSE LINEIN
will read from STDIN without changing the external data queue.

Using Interactive Mode
A very simple example of using SAY and PULL for interactive user input and output
was given earlier:

/\ Name verification program \/

SAY "Good morning. Please enter your name."

PULL who

IF who = " " THEN SAY "Good morning stranger."

ELSE SAY "Good morning" who"."

14 REXX/400 Programmer’s Guide V4R1

When run with the defaults for STDIN and STDOUT, the following will be displayed:

à ð

Good morning. Please enter your name.

 ==> ___

3=Exit F4=End of File F6=Print F9=Retrieve F17=Top

 18=Bottom F19=Left F2ð=Right F21=User Window

á ñ

The PULL instruction will cause the program to pause and wait for user input.

Display with response: When a response is given, the program will continue to
run, and the terminal session will show the following:

à ð

Good morning. Please enter your name.

 Jesse

Good morning JESSE.

Press ENTER to end terminal session.

 ==> ___

3=Exit F4=End of File F6=Print F9=Retrieve F17=Top

 18=Bottom F19=Left F2ð=Right F21=User Window

á ñ

 Chapter 2. Writing and Running REXX Programs 15

Display without response: If no entry is made, and only the Enter key is
pressed, the following will be shown:

à ð

Good morning. Please enter your name.

Good morning stranger.

Press ENTER to end terminal session.

 ==> ___

3=Exit F4=End of File F6=Print F9=Retrieve F17=Top

 18=Bottom F19=Left F2ð=Right F21=User Window

á ñ

Using Batch Mode
When running in batch mode, with the defaults for STDIN and STDOUT, REXX
programs which use SAY instructions will produce a file using QPRINT. PULL
instructions will read a record from the file QINLINE, which defaults to the inline
data for the job.

16 REXX/400 Programmer’s Guide V4R1

 Chapter 3. Using Variables

This chapter covers the information you need to work with variables, including:

� Understanding Variables and Constants
� Using Compound Symbols
� Using Variables in Programs, Functions, and Subroutines.

Understanding Variables and Constants
Variables and constants are types of symbols. A symbol is a group of up to 250
characters. These characters can be A-Z, a-z, 0-9, a period, an exclamation point,
a question mark, an underscore, or any REXX/400 extension character identified as
a NAME character for the coded character set identifier (CCSID) in which the
REXX source file is written (see the National Language Support for more
information).

 Using Constants
A symbol that begins with a digit (0-9) or a period is a constant. You cannot
change the value of a constant. Therefore, constants cannot be used as variables.
One special form of constant symbol is a number in exponential notation. In REXX,
numbers in exponential notation include the mantissa, the letter e or E, an optional
+ or - sign, and the whole number exponent. The following are a few examples of
constants:

77 is a valid number

.0004 begins with a period (decimal point)

1.2e6 Exponential notation for 1,200,000

42nd is not a valid number. Its value is always 42ND.

 Using Variables
A variable is a symbol that represents a value. This value can be different each
time the program is run or can change while the program is running. Although the
value can change, the variable name stays the same.

A variable which has not been assigned a value is not initialized. It will contain the
default value of the symbol, which is the symbol's own name in uppercase letters,
as shown in the following examples:

/\ This displays unassigned variables. \/

SAY amount /\ This displays "AMOUNT". \/

SAY first /\ This displays "FIRST". \/

SAY price /\ This displays "PRICE". \/

SAY who /\ This displays "WHO". \/

 Copyright IBM Corp. 1997 17

 Naming Variables
Variable names may be up to 250 characters long. The other rules for naming
variables are:

1. The first character must be either A-Z, a-z, 0-9, a period, an exclamation point,
a question mark, an underscore, or any REXX/400 extension character
identified as a NAME character for the coded character set identifier (CCSID) in
which the REXX source file is written.

REXX treats all letters in variable names as if they were in uppercase, so
whether you write fred, Fred, or FRED as the name of a variable, REXX uses
FRED as the variable name.

2. The remaining characters can be either A-Z, a-z, 0-9, a period, an exclamation
point, a question mark, an underscore, or any REXX/400 extension character
identified as a NAME character for the coded character set identifier (CCSID) in
which the REXX source file is written.

The period has a special meaning for REXX variables. It forms compound
symbols. You should avoid using the period in variable names until you
understand compound symbols, which are discussed in “Using Compound
Symbols” on page 20.

Choosing variable names that are descriptive helps make your program more
understandable. REXX helps you do that by allowing long names and allowing
some punctuation and numbers in the names.

 Assigning Variables
The process of giving a variable an initial value or changing its value is called an
assignment.

The following is the syntax of an assignment:

symbol = expression

where:

symbol is a valid REXX variable name

expression is the information to be stored. This can be a number, string, or a
calculation performed by REXX.

REXX evaluates the expression and puts the result into the variable called symbol.

The following are examples of assigning values to variables:

� To give the variable total the value ð, use:

total = ð

� To give another variable, called price, the same value as total, use:

price = total

� To give the variable total a new value (the old value of total plus the value of
something), use:

total = total + something

18 REXX/400 Programmer’s Guide V4R1

The following are more examples of assigning variables:

data = 1 /\ This is an integer number. \/

data = 1+1 /\ This is an integer expression. \/

data = 3.14159 /\ This is a decimal number. \/

data = data \ 2 /\ This is a decimal expression. \/

data = 2.ð3E+12 /\ This is an exponential notation. \/

data = data / 2 /\ This is an exponential expression.\/

data = "Hello, world" /\ This is a character string. \/

data = Substr("Hello, world",1,5) /\ This is a character expression. \/

Assigning Variables from User Inputs: Variables can be assigned from input
supplied by the user while the program is running. The PULL and ARG keyword
instructions are commonly used for this purpose.

The PULL Instruction: The PULL instruction pauses the program to allow the user
to type one or more items of data which are assigned to variables. The items are
separated by spaces, as shown in the following example:

SAY "Type two numbers (leave a space between) and press Enter"

PULL first second

PULL reads the two numbers entered and assigns them, in order, to the list of
variables that follow it. PULL is a shortened version of the PARSE PULL
instruction which is discussed in “Using PARSE PULL” on page 62. The process
of reading and breaking up information is called parsing, which is discussed in
greater detail in Chapter 6, “Using REXX Parsing Techniques” on page 61.

The ARG Instruction: The ARG instruction performs the same operation as PULL,
except that items are entered as arguments when the program is called.

/\ Displays the sum of two numbers \/

/\ entered this time at the command line. \/

ARG first second /\collects entries \/

SAY "The sum is" first + second

ARG is another form of the PARSE ARG instruction which is discussed in “Using
PARSE ARG” on page 62.

If this program were put into the file QREXSRC in library QGPL in a member
named SUM, the command to have it add one plus two would be:

STRREXPRC SRCFILE(QGPL/QREXSRC) SRCMBR(SUM) PARM('1 2')

The program would display The sum is 3.

Assigning an Expression Result: Variables can be assigned data that is the
result of a calculation or other manipulation. This data is represented as an
expression. The following are examples of assigning the result of a calculation to a
variable:

area = 3 \ 5 /\ The area of a 3 by 5 in. rectangle \/

SAY area "sq. in." /\ displays "15 sq. in.". \/

diameter = 5 /\ The area of a 5 in. circle, \/

radius = diameter/2

area = 3.14 \ radius \\2 /\ 3.14 times the radius squared \/

SAY area "sq. in." /\ displays "19.625ð sq. in.". \/

 Chapter 3. Using Variables 19

The previous examples are simple demonstrations of assigning expression results
to a variable. But REXX expressions can have very complex forms, and they can
work with all kinds of information. For further information on expressions, see
Chapter 4, “Using REXX Expressions” on page 31.

Displaying a Variable's Value: To write the value of a variable to STDOUT, at
any given point in a program, use the SAY instruction:

amount = 1ðð /\ This assigns 1ðð to AMOUNT. \/

money = "dollars" /\ This assigns "dollars" to MONEY. \/

SAY amount money /\ This displays "1ðð dollars". \/

amount = amount + 25 /\ This adds 25 to AMOUNT. \/

SAY amount money /\ This displays "125 dollars". \/

SAY price /\ This displays "PRICE". \/

Notice that when a reference is made to an unassigned variable, the default value
is the variable's name in uppercase letters.

Another instruction which you can use to check the value of a variable while the
program is running is the TRACE instruction. For further information, see “Using
the TRACE Instruction and the TRACE Function” on page 123.

Using Compound Symbols
A variable name containing at least one period and at least one other character
following the period is called a compound symbol. It cannot begin with a digit or a
period, and if there is only one period, the period cannot be the last character. The
following are a few examples of compound symbols:

Note: In these examples, the < and > are DBCS symbols representing '0E'X and
'0F'X, respectively. For more information on DBCS character strings and symbols,
see the REXX/400 Reference.

fred. = ''

 fred.3

 array.G.B.

 PENS..six.6

 <.F.R.E.D>.<.C.D>

Stems and Tails
The compound symbol consists of a stem and a tail. The stem contains the
beginning of the name up to and including the first period. The following are the
stems from the previous examples:

 fred.

 array.

 PENS.

 <.F.R.E.D>.

The number of elements in the stem are generally stored in STEM.0. If you use a
DO loop, you can easily process all the elements.

The stem is followed by the tail, which consists of one or more valid symbols
(constants or variables) that are separated by periods.

20 REXX/400 Programmer’s Guide V4R1

The following are tails from the compound symbol examples:

 3

 G.B.

 .six.6

 <.C.D>

The following is an example:

/\ This program records account balances for customers of a pet store. \/

last_name = 'Jones'

customer.last_name.first_name = 'Suzanne'

customer.last_name.address = '123 Main Street'

customer.last_name.balance = 115.23

customer.last_name.purchase = 'yellow parrot'

last_name = 'Smith'

customer.last_name.first_name = 'Adrian'

customer.last_name.address = '17 Cherry Lane'

customer.last_name.balance = 79.98

customer.last_name.purchase = 'brown hamster'

last_name = 'Jones'

Say 'Customer' customer.last_name.first_name last_name 'has a balance of',

customer.last_name.balance 'dollars.'

Say 'This customer''s last purchase was a' customer.last_name.purchase'.'

/\ The output from this program is:

Customer Suzanne Jones has a balance of 115.23 dollars.

This customer's last purchase was a yellow parrot.

\/

 Derived Names
You can use compound symbols to create an array of variables that can be
processed by their derived names. For example, take the following collection:

day.1 = "Sunday"

day.2 = "Monday"

day.3 = "Tuesday"

day.4 = "Wednesday"

day.5 = "Thursday"

day.6 = "Friday"

day.7 = "Saturday"

If you know which day of the week it is, then you know the name of that day. If
j=6, then the instruction SAY day.j displays Friday.

This is the path that REXX takes to determine what is displayed:

1. REXX recognizes the symbol day.j as compound because it contains a period.

2. The characters following the period may be the name of a variable. In this
case, the variable j.

3. The value of j is substituted with 6, producing a derived name of day.6.

4. The value of the variable day.6 is the literal string "Friday".

 Chapter 3. Using Variables 21

So, for example, if you want to display the days of the week forever:

day.1 = "Sunday"

day.2 = "Monday"

day.3 = "Tuesday"

day.4 = "Wednesday"

day.5 = "Thursday"

day.6 = "Friday"

day.7 = "Saturday"

DO j = 1 by 1 /\This is a DO forever. J gets incremented. \/

 SAY day.j

IF j = 7 THEN j = ð

END

This idea can be extended. By using the SELECT instruction, you can SAY the
days for the month of January. The SELECT instruction performs the same
operation as nested IF...THEN...ELSE statements, but is clearer than a large
nested group.

Note: The following example will run correctly if Sunday is the first day of the
month.

day.1 = "Sunday"

day.2 = "Monday"

day.3 = "Tuesday"

day.4 = "Wednesday"

day.5 = "Thursday"

day.6 = "Friday"

day.7 = "Saturday"

DO dayofmonth = 1 to 31 /\ operation // divides and returns the remainder \/

dayofweek = (dayofmonth+6)//7 + 1

 SELECT

WHEN dayofmonth = 1 THEN th = "st"

WHEN dayofmonth = 2 THEN th = "nd"

WHEN dayofmonth = 3 THEN th = "rd"

WHEN dayofmonth = 21 THEN th = "st"

WHEN dayofmonth = 22 THEN th = "nd"

WHEN dayofmonth = 23 THEN th = "rd"

WHEN dayofmonth = 31 THEN th = "st"

OTHERWISE th = "th"

 END

SAY day.dayofweek dayofmonth││th "January"

END

In this case, the SELECT instruction lets you choose a particular ending on the
number of the day, depending on the day of the month. For example, the first line
the program will display is:

Sunday 1st January

For more information on the SELECT instruction, see the REXX/400 Reference.
Further information on the program controls of DO...END and IF...THEN...ELSE can
be found in “Using Structured Programming” on page 45.

22 REXX/400 Programmer’s Guide V4R1

 Arrays
Many programming languages provide a data structure called arrays, which allow
you to access a sequentially numbered set of variables. In REXX, stemmed
variables can be used in a similar way.

Example 1: If you wanted to read in ten values entered by the user, you could
write:

DO i = 1 to 1ð

SAY 'Enter value number' i

PARSE PULL value.i

END

The subscripts on stemmed variables are constant or variable symbols, not
expressions.

Example 2: Here is how you could insert a new value in the first entry in a
stemmed variable, and shift all the old values down by one:

/\ Assume count is the number of entries in stemmed variable array. \/

DO i = count + 1 to 2 by -1

previous = i - 1

array.i = array.previous

END

count = count + 1 /\ Update the new count. \/

array.1 = newvalue /\ Store the new value. \/

Stemmed variables are more flexible than traditional arrays because the tails may
have character values in addition to numeric values. You can store data of
different types in the same stemmed variable. And when you have a sparse array,
an array where the elements are not numbered consecutively, no storage is wasted
for the unused entries.

Example 3: This is an example of using compound symbols to collect and
process data. In the first part of the program, the first player's score is entered into
SCORE.1, the second player's into SCORE.2, and so on. By using compound
symbols, the array of SCOREs is processed to give the result in the required form.

/\ This is a scoreboard for a game. Any number of \/

/\ players can play. The rules for scoring are these: \/

/\ \/

/\ Each player has one turn and can score any number of \/

/\ points; fractions of a point are not allowed. The \/

/\ scores are entered into the computer and the program \/

/\ replies with \/

/\ \/

/\ the average score (to the nearest hundredth of \/

/\ a point) \/

/\ the highest score \/

/\ the winner (or, in the case of a tie, \/

/\ the winners) \/

/\--\/

/\ Obtain scores from players. \/

/\--\/

SAY "Enter the score for each player in turn. When all"

SAY "have been entered, enter a blank line."

SAY

 Chapter 3. Using Variables 23

n=1

DO forever

SAY "Please enter the score for player "n

 PULL score.n

 SELECT

WHEN DATATYPE(score.n,whole) THEN n=n+1

WHEN score.n="" THEN leave

OTHERWISE SAY "The score must be a whole number."

 END

END

n = n - 1 /\ now n = number of players \/

IF n = ð THEN EXIT

/\--\/

/\ Calculate average score. \/

/\--\/

total = ð

DO player = 1 to n

total = total + score.player

END

SAY "Average score is",

FORMAT(total/n,,2,ð) /\ Format "total/n" with \/

/\ no leading blanks, \/

/\ round to 2 decimal places,\/

/\ and do not use \/

 /\ exponential notation. \/

/\ continued ... \/

/\--\/

/\ Calculate highest score. \/

/\--\/

highest = ð

DO player = 1 to n

highest = MAX(highest,score.player)

END

SAY "Highest score is" highest

/\--\/

/\ Now calculate: \/

/\ \ W, the total number of players that have a score \/

/\ equal to HIGHEST \/

/\ \ WINNER.1, WINNER.2 ... WINNER.W, the id-numbers \/

/\ of these players \/

/\--\/

w = ð /\ number of winners \/

DO player = 1 to n

IF score.player = highest THEN DO

w = w + 1

winner.w = player

 END

END

/\--\/

/\ Announce winners. \/

/\--\/

IF w = 1

24 REXX/400 Programmer’s Guide V4R1

THEN SAY "The winner is Player #"winner.1

ELSE DO

SAY "There is a draw for top place. The winners are"

DO p = 1 to w

 SAY " Player #"winner.p

 END

END

SAY

 Two-dimensional Arrays
There can be more than one period in a compound symbol. For example, the
following program simulates a board on which checkers can be played. The BOARD

is a two-dimensional array (8 squares by 8 squares) called BOARD.ROW.COL. There
is a total of 64 squares.

The picture shows how the playing pieces are set at the start of the game.

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8

R o w

C o l u m n

b b

bbbb

bbbb

r r r r

rrrr

r r r r

b b

 Chapter 3. Using Variables 25

/\ In the internal representation, Red's "men" are \/

/\ represented by the character "r" and Red's "kings" \/

/\ by the character "R". Similarly, Black's "men" and \/

/\ "kings" are represented by "b" and "B". \/

/\--\/

/\ Clear the board. \/

/\--\/

board. = " "

/\--\/

/\ Set out the men. \/

/\--\/

DO col = 1 by 2 to 7

board.1.col = "r"

board.3.col = "r"

END

DO col = 2 by 2 to 8

board.2.col = "r"

END

DO col = 2 by 2 to 8

board.6.col = "b"

board.8.col = "b"

END

DO col = 1 by 2 to 7

board.7.col = "b"

END

Using Variables in Programs, Functions, and Subroutines
The following section discusses several considerations when using variables in
REXX programs.

Using Special Variables
REXX has three special variables that are assigned values automatically as
needed:

RC The RC variable holds the return code for the last command run by the
REXX program. Following SIGNAL events (SYNTAX, ERROR, and
FAILURE), RC is set to either the syntax error number or the command
return code. For more information on the RC special variable, see
“Understanding Return Codes” on page 82.

RESULT The RESULT variable holds the value set by a RETURN instruction from
any subroutine or from an EXIT instruction in an external subroutine.
When a subroutine is called by the CALL instruction, and the RETURN
instruction which ends the subroutine specifies an expression, the value
of that expression is put in the RESULT special variable. If the
RETURN instruction does not specify an expression, RESULT is set to
its default value, RESULT. For more information on the RESULT
special variable, see “Understanding External Routines Written in REXX”
on page 101.

SIGL The SIGL variable holds the line number of the last call or branch to a
label. For more information on the SIGL special variable and its use
with conditions, see “Using Condition Trapping” on page 133.

26 REXX/400 Programmer’s Guide V4R1

Using the SYMBOL Function
Occasionally during the course of a program, it is useful to check if a symbol has
already been used as a name of a variable. To do this, use the SYMBOL function:

55─ ──SYMBOL(name) ─5%

where name is the name of the symbol that you want to check.

This function returns the following codes:

� BAD, if name is not a valid symbol

� VAR, if name has already been used as a variable in the program

� LIT, if name is a valid variable that has not yet been assigned a value, or if it is
a constant.

One use of SYMBOL is to ensure initialization of a variable. You may want to
make certain that the variable is set to a proper starting value before it is used in
an operation. For example:

IF SYMBOL("CASH") = "LIT" THEN cash = ð

cash = cash + payment

Notice what happens if the argument of SYMBOL is not in quotation marks:

cash = 1ðð

SAY SYMBOL(CASH) /\ Says "LIT" because 1ðð is a literal. \/

SAY SYMBOL("CASH") /\ Says "VAR" because CASH is the name \/

/\ of a variable. \/

Using the PROCEDURE Instruction
By default, variables created in a program are available to all internal routines and
the main program. The PROCEDURE instruction limits the scope of variables.

To create a new generation of variables in an internal routine, use the
PROCEDURE instruction as the first instruction of that routine. Then all the
variables in the main program will be hidden from the routine. Local variables may
be created in the routine (even using the same names as variables existing in the
main program). When the routine ends, all of its local variables are deleted. The
values of these variables cannot be accessed in the main program, and they
cannot be accessed on future calls to the routine.

The following program shows the use of the PROCEDURE instruction. The
program calculates the average of a list of values, assigned to the variable LIST.
The value is calculated in a subroutine, which has the list passed to it as a
parameter (the subroutine does not touch the variable LIST directly). The variable
named COUNT is used in both the main program and the subroutine, but because
of the PROCEDURE instruction, two separate variables are created.

 Chapter 3. Using Variables 27

/\ Using the PROCEDURE Instruction \/

count = 999

list = 3 4 5 6 7

CALL average list

/\ At this point: COUNT = 999 (it is unchanged) \/

/\ list = 3 4 5 6 7 (it is unchanged) \/

/\ RESULT = 5 (it is set by the RETURN instruction. \/

Say 'The average is' result 'and COUNT is' count

EXIT

AVERAGE:

/\ The argument must be a list of numbers, separated by blanks. \/

/\ The average of the numbers is returned. \/

PROCEDURE

/\ At this point, all the variables in the main program are hidden \/

ARG inputlist

sum = ð /\ SUM is now a local variable \/

DO count = 1 to words(inputlist) /\ COUNT is now a local variable \/

sum = sum + word(inputlist,count)

END

SAY 'In the subroutine (after the loop) COUNT is' count

RETURN sum/words(inputlist)

/\ The output from the program is

in the subroutine (after the loop) COUNT is 6.

The average is 5 and COUNT is 999.

\/

The PROCEDURE instruction can only be used within an internal routine, and it
must be the first instruction in the routine.

If an external routine is called, the PROCEDURE instruction is implied. The
variables of the calling program are hidden from the external routine, and vice
versa.

Using the PROCEDURE EXPOSE Instruction
To share a limited set of variables between a main routine and an internal
subroutine, use:

 ┌ ┐────────
55──PROCEDURE──EXPOSE─ ───

6
┴─name─ ─5%

where name is the name of a variable to be shared.

Any variables not named by the PROCEDURE EXPOSE instruction are protected
just as with the PROCEDURE instruction. The ones listed are available to the
subroutine. The list of variables to be exposed can also be assigned to a single

28 REXX/400 Programmer’s Guide V4R1

variable, and that single variable can be used to identify the whole list. You can
also share the variables in an array by specifying the stem of that array.

Example 1: The following program calculates the total interest earned from the
checking, savings, and certificate accounts. The program uses two internal
subroutines to obtain the same value in two different ways.

These two subroutines are identical except for the manner in which they expose the
same variables, defined in the beginning. The first subroutine, INTEREST1, exposes
the three variables by listing them. The second subroutine, INTEREST2, exposes the
variables by using one variable, enclosed in parentheses, which denotes the
variable list.

/\ Assign three variables. \/

check_rate = .ð55

save_rate = .ð65

cert_rate = .ð75

/\ Remember the list of variables. \/

/\ The variables names are put in quotation marks \/

/\ because the names are required, \/

/\ not the values. The names may be uppercase or lowercase. \/

rate_list = "check_rate SAVE_RATE CERT_RATE"

checking_balance = 1ððð

saving_balance = 5ððð

cert_balance = 1ðððð

/\ Call the first routine to calculate total interest \/

earning1 = interest1(checking_balance, saving_balance, cert_balance)

/\ Call the second routine to calculate total interest \/

earning2 = interest2(checking_balance, saving_balance, cert_balance)

/\ At this point, earning1 = earning2, because the two functions \/

/\ return the same result. \/

EXIT

INTEREST1:

PROCEDURE EXPOSE check_rate save_rate cert_rate

ARG balance1, balance2, balance3

total = balance1 \ check_rate + balance2 \ save_rate + balance3 \ cert_rate

RETURN total

INTEREST2:

PROCEDURE EXPOSE (rate_list)

ARG balance1, balance2, balance3

total = balance1 \ check_rate + balance2 \ save_rate + balance3 \ cert_rate

RETURN total

 Chapter 3. Using Variables 29

Example 2: The PROCEDURE EXPOSE instruction will expose all variables with
a given stem when the stem is exposed. Here is the interest calculation example
again, using stems.

/\ Assign three variables \/

rate.check = .ð55

rate.save = .ð65

rate.cert = .ð75

checking_balance = 1ððð

saving_balance = 5ððð

cert_balance = 1ðððð

/\ Call the routine to calculate total interest \/

earning = interest(checking_balance, saving_balance, cert_balance)

/\ At this point, earning is the same as earning1 and earning2 were \/

/\ in the previous example. \/

EXIT

interest: Procedure expose rate.

ARG balance1, balance2, balance3

total = balance1 \ rate.check + balance2 \ rate.save + balance3 \ rate.cert

RETURN total

30 REXX/400 Programmer’s Guide V4R1

Chapter 4. Using REXX Expressions

An expression is a collection of tokens that is evaluated. Expressions are used by
variable assignments, instructions, and function calls. In any of the following
instructions, you can put an expression where the word expression appears:

symbol = expression
SAY expression
IF expression THEN...

Here are some simple expressions, with the evaluated results shown in the
comment:

2 + 2 /\ Its value is '4'. \/

"D" "E" "F" /\ Its value is 'D E F'. \/

5 < 7 /\ Its value is '1', because the comparison is true.\/

This chapter covers the information you need to know in order to write expressions
that REXX can evaluate. This includes:

� Using Terms and Operators
� Using Function Calls
� Using Expressions in Instructions
� Using Expressions as Commands.

Using Terms and Operators
Expressions contain the data to be evaluated and the operations to be performed.

Terms The data the expression evaluates is called a term. An expression can
contain many different terms. The kinds of terms that can be included in
expressions are:

Numbers Numbers are strings that REXX can use in calculations.
REXX recognizes them as constant values. The
following are examples of valid numbers:

25 3.14159 199ð

Literal strings Literal strings are strings enclosed within matched
quotation marks. The string is treated as a constant
value. The following are examples:

"Wednesday"

"ð9 June 9ð"

'LIBNAME/FILENAME'

Variables Variables are symbols that stand for changeable data.
REXX places the value of the variable in the
expression. The following are examples:

date=3ð /\ This places the number 3ð \/

/\ in the variable DATE. \/

month="March" /\ This places the literal string \/

/\ March in the variable MONTH. \/

SAY month date /\ This displays "March 3ð". \/

 Copyright IBM Corp. 1997 31

Function calls Function calls are any call to a function in an
expression. REXX performs the function call, then uses
the returned result as the expression term. The
following are examples:

SAY TIME() /\ This displays the current time.\/

SAY SUBSTR("REXX",2,1) /\ This displays "E", \/

/\ because E is 1 character \/

/\ from the string "REXX", \/

/\ starting with the \/

/\ 2nd character. \/

Operators The computation to be performed on the terms is indicated by an
operator. An expression can contain many operators, depending on its
complexity. The operators can perform arithmetic, string, comparison,
and logical operations on the terms included in the expression.

You can control how the expression works by understanding the order in which
expressions are evaluated and how to control that evaluation process using
parentheses.

Order of Operation Expressions are evaluated from left to right, with the
operations performed on adjacent terms. Some
operators have higher priority than others, which
changes the left to right evaluation. The complete order
of precedence of operators is shown in Table 5 on
page 145.

Parentheses You can also control how expressions are evaluated by
using parentheses. Expressions within parentheses are
evaluated first. The following are examples:

SAY 6-4+1 /\ This displays 3. \/

SAY 6-(4+1) /\ This displays 1. \/

SAY 3+2||2+3 /\ This displays 55. \/

SAY 3+(2||2)+3 /\ This displays 28. \/

Appendix D, “Operators and Order of Operations” on page 143 provides a
complete list of all of the operators recognized by REXX.

Using Arithmetic Operators
Arithmetic operations can be performed on valid REXX numbers. The following are
examples of numbers:

12 This is an integer.

0.5 This is a decimal fraction.

3.5E6 This is a floating point number using exponential notation.

-5 This is a signed number.

REXX provides extensive arithmetic capabilities. The following table shows some
of the arithmetic operators available, and an example of each.

32 REXX/400 Programmer’s Guide V4R1

Note: A valid REXX number can be either a constant or a variable which contains
a number.

By default, REXX calculates to nine significant digits, not counting the zeros that
come just after the decimal point in very small decimal fractions.

SAY 7/3ðððððððððð /\ This displays 'ð.ððððððððð233333333'.\/

SAY 1\2\3\4\5\6\7\8\9\1ð\11\12 /\ This displays '479ðð16ðð'. \/

You can change the number of significant digits by using the NUMERIC DIGITS
instruction. See “Using the NUMERIC DIGITS Instruction” on page 35.

Operator Operation Example

+ (plus sign) Addition SAY 7+2 /\ This displays '9'. \/

- (minus sign) Subtraction SAY 7-2 /\ This displays '5'. \/

* (asterisk) Multiplication SAY 7\2 /\ This displays '14'. \/

/ (one slash) Division SAY 7/2 /\ This displays '3.5'.\/

% (percent sign) Integer division.
The result is a
whole number
with the
remainder
ignored.

SAY 7%2 /\ This displays '3'. \/

// (two slashes) Remainder after
integer division

SAY 7//2 /\ This displays '1'. \/

** (two asterisks) Exponentiation SAY 7\\2 /\ This displays '49'.\/

Using the DATATYPE Function
Arithmetic operations can only be performed on valid numbers. Before performing
arithmetic operations on data, you may want to check that the data is valid numeric
data. To do this, use the DATATYPE function.

In its simplest form, this function returns the word NUM, if the argument is a valid
number that could be used in arithmetical operations. Otherwise, it returns the
word CHAR.

The following are examples of using the DATATYPE function:

DATATYPE(99) /\ This returns NUM. \/

DATATYPE(6.6) /\ This returns NUM. \/

DATATYPE(5.5.5) /\ This returns CHAR. \/

DATATYPE('5,ððð') /\ This returns CHAR. \/

DATATYPE(5 4 3 2) /\ This returns CHAR. \/

If you wanted a user to keep entering values until a valid number is entered, you
could write:

DO UNTIL DATATYPE(howmuch) = "NUM"

SAY "Enter a number"

 PULL howmuch

IF DATATYPE(howmuch) = "CHAR"

THEN SAY "That was not a number. Try again."

END

SAY "The number you entered was" howmuch

 Chapter 4. Using REXX Expressions 33

There is an additional form of the DATATYPE function which provides more
information. This form requires two arguments. For example, if you were
interested only in whole numbers, you would use the following format:

55─ ──DATATYPE(number,whole) ─5%

where:

number
Is the data to be tested

whole
Is the type of data to be tested for (in this case, a whole number). Only the
first character is inspected. Thus, to test for whole numbers, it would be
sufficient to write W or w.

This form of the function returns 1 (true) if number is a whole number or 0 (false) if
not, as shown in the following example:

DO UNTIL DATATYPE(howmany,whole)

...

 PULL howmany

...

END

If you also wanted to restrict the input to numbers greater than zero, you would
use:

DO UNTIL DATATYPE(howmany,whole) & howmany > ð

...

 PULL howmany

...

END

The DATATYPE function can test for other types of data, as well. See the
DATATYPE function in the REXX/400 Reference for more information.

Using Exponential Notation
Since it is easy to make a mistake counting the zeros in numbers, it is useful to use
exponential notation.

Numbers written in exponential notation, like 1.5E9, are sometimes called floating
point numbers. Conversely, ordinary numbers, like 3.14, are sometimes called
fixed point numbers.

Exponential notation is indicated by a fixed point number followed by the letter E
followed by a whole number. The whole number is the exponent. When the
exponent is positive, it indicates how many places to the right the decimal point of
the fixed point number moves to obtain the same value as an ordinary number.
When it is negative, it indicates the number of places the decimal point moves to
the left. The following are examples:

4.5E6 is the same as 4500000

23E6 is the same as 23000000

34 REXX/400 Programmer’s Guide V4R1

1E12 is the same as 1000000000000

4.5E-3 is the same as 0.0045

1E-6 is the same as 0.000001

Exponential notation can be used in expressions and when entering numeric data.
REXX will use this notation when displaying results that are too big or too small to
be expressed conveniently as ordinary numbers or decimals. When REXX uses
this notation, the mantissa will usually be a number between 1 and 9.999999999,
as shown in the following example:

j = 1

DO UNTIL j > 1E12

 SAY j

j = j \ 11

END

/\ This displays '1'. \/

/\ This displays '11'. \/

/\ This displays '121'. \/

/\ This displays '1331'. \/

/\ This displays '14641'. \/

/\ This displays '161ð51'. \/

/\ This displays '1771561'. \/

/\ This displays '19487171'. \/

/\ This displays '214358881'. \/

/\ This displays '2.35794768E+9'. \/

/\ This displays '2.59374246E+1ð'. \/

/\ This displays '2.85311671E+11'. \/

Using the NUMERIC DIGITS Instruction: If you do not want to use exponential
notation, or simply want to increase the accuracy of your calculations, you can use
the NUMERIC DIGITS instruction to change the number of significant digits from its
default of 9.

The following are examples:

/\ Examples of numbers with unusually high precision \/

NUMERIC DIGITS 1ð

SAY "A large signed number is" 2\\31-1

/\ Displays 'A large signed number is 2147483647'.\/

NUMERIC DIGITS 48

SAY "1/7=" 1/7

/\ Displays 1/7=ð.142857142857142857142857142857142857142857142857.\/

You can check the NUMERIC DIGITS setting at any time by using the DIGITS
function, as shown in the following example:

SAY 'The current precision is' DIGITS() 'digits.'

 Chapter 4. Using REXX Expressions 35

Controlling Rounding and Truncation: Because of the way arithmetic operations
are carried out, the accuracy of the final results may be influenced by the rounding
operations.

The following is an example:

NUMERIC DIGITS 3

SAY 1ðð.3 + 1ðð.3 /\ Displays '2ð1', \/

/\ which is 2ðð.6 rounded. \/

REXX uses conventional rounding, and rounds as each operation within the
expression is completed. In the following example, the expression is evaluated
from left to right and rounding occurs after each addition:

SAY 1ðð.2 + 1ðð.2 + 1ðð.2 /\ Displays '3ðð', which is \/

/\ 2ðð.4, rounded to 2ðð, \/

/\ plus 1ðð.2, which is 3ðð.2 \/

/\ rounded to 3ðð. \/

When your program performs a series of arithmetic operations, rounding can affect
the accuracy of the final result.

You can use the FORMAT function to control rounding of numbers at the point in
your calculations where you want rounding to occur. The TRUNCATE function is
used to round numbers down and override conventional rounding. The following is
an example:

/\ An example of rounding \/

qty.1 = 5ðð

qty.2 = 5ðð

unitprice.1 = 4ðð/12

unitprice.2 = 2ðð/12

SAY /\ Leave a blank line. \/

SAY "Quantity Unit price Total price Remarks"

SAY copies("-",58) /\ Places 58 hyphens across the display. \/

DO item = 1 to 2 /\ For each item, determine the total price, \/

/\ one time rounding conventionally, and \/

/\ one time rounding down. \/

unitprice = FORMAT(unitprice.item,9,2)

 SAY FORMAT(qty.item,6,ð),

 FORMAT(unitprice,7,2),

FORMAT(qty.item \ unitprice,1ð,2),

 " Rounding conventionally"

unitprice = TRUNC(unitprice.item,2)

 SAY FORMAT(qty.item,6,ð),

 FORMAT(unitprice,7,2),

FORMAT(qty.item \ unitprice,1ð,2),

 " Rounding down"

END

36 REXX/400 Programmer’s Guide V4R1

When this program is run, the following will be written to STDOUT.

Quantity Unit price Total price Remarks

--

5ðð 33.33 16665.ðð Rounding conventionally

5ðð 33.33 16665.ðð Rounding down

 5ðð 16.67 8335.ðð Rounding conventionally

 5ðð 16.66 833ð.ðð Rounding down

Notice that the TRUNCATE function changed the unit price of the second item from
16.67 to 16.66, with the resulting $5 difference in total price.

For more information on the DO...END instruction, see Chapter 5, “Using REXX
Instructions” on page 45.

Using String Operators
String operators perform concatenation. Concatenation simply means joining
strings together. Whether a space is placed between concatenated terms depends
on the operator you use.

� If you leave one or more blanks between the terms of an expression, REXX
concatenates them with a single blank.

� If you put the terms together with no intervening blanks, this is called an
abuttal. This operation simply joins the terms with no blanks.

� If you use the concatenation operator, ||, you also join two strings without a
blank. This operator allows you to concatenate strings where abuttal will not
work, such as joining variables. It also can be used in place of abuttal when
you want to be explicit about how strings are to be joined.

In summary, the concatenation operators are:

Operator Operation

Blank(s) Concatenate terms with one blank in between

|| Concatenate terms without a blank (force abuttal)

Abuttal Concatenate without an intervening blank

 Chapter 4. Using REXX Expressions 37

 Concatenation examples:

SAY "slow"||"coach" /\ This displays 'slowcoach'. \/

SAY "slow" "coach" /\ This displays 'slow coach'.\/

adjective = "slow"

SAY adjective"coach" /\ This displays 'slowcoach'. \/

/\ (using abuttal). \/

SAY adjective "coach" /\ This displays 'slow coach'.\/

SAY "("adjective")" /\ This displays '(slow)'. \/

SAY 4||5 /\ This displays '45'. \/

SAY 4 5 /\ This displays '4 5'. \/

tens = 4

units = 5

SAY tens||units /\ This displays '45'. \/

SAY tensunits /\ This displays 'TENSUNITS' \/

/\ (because abuttal \/

/\ produces a new \/

 /\ symbol). \/

SAY (4||5) / 3 /\ This displays '15'. \/

Concatenation works with numeric and nonnumeric strings.

38 REXX/400 Programmer’s Guide V4R1

Using Comparison Operators
Comparison operators test data, rather than change or control it directly. An earlier
example in this book included the comparison operation:

IF who = " " THEN SAY...

The result of this comparison controls what happens next.

Primarily, the comparison operators let you test if a term is equal to, not equal to,
greater than, or less than some other term of the expression. By combining
comparison operators you can test if terms are greater than or equal to, not greater
than or equal to, and so forth. You can combine comparison operators to test
terms.

Operator Operation

= = True if terms are strictly equal (identical)

= True if the terms are equal (numerically or when padded)

\ = = True if the terms are NOT strictly equal

¬ = = True if the terms are NOT strictly equal

\ = Not equal (inverse of =)

¬ = Not equal (inverse of =)

> Greater than

< Less than

> > Strictly greater than

< < Strictly less than

> < Greater than or less than (same as not equal)

< > Less than or greater than (same as not equal)

> = Greater than or equal to

\ < Not less than

¬ < Not less than

> > = Strictly greater than or equal to

\ < < Strictly NOT less than

¬ < < Strictly NOT less than

< = Less than or equal to

\ > Not greater than

¬ > Not greater than

< < = Strictly less than or equal to

\ > > Strictly NOT greater than

¬ > > Strictly NOT greater than

Note: The symbols \ and ¬ are synonymous. Either may be used as a not symbol. Usage
is a matter of availability or personal preference.

 Chapter 4. Using REXX Expressions 39

The equal sign (=) can have different meanings in REXX depending on its position
in a clause. The following is an example:

amount = 5 /\ The variable AMOUNT is assigned the value 5.\/

SAY amount = 5 /\ Compare the value of AMOUNT with 5. \/

/\ If they are the same, say '1'; \/

/\ otherwise, say 'ð'. \/

The result of a comparison expression is either 1 (indicating the comparison is true)
or 0 (indicating the comparison is not true). The following are examples:

SAY 5 = 5 /\ This displays "1". \/

SAY 5 <> 5 /\ This displays "ð". \/

SAY 5 = 4 /\ This displays "ð". \/

SAY 2 + 2 = 4 /\ This displays "1". \/

SAY 2 + 2 = 5 /\ This displays "ð". \/

howmuch = 2 + 3 /\ This assigns the sum of 2 and 3 \/

/\ to the variable HOWMUCH. \/

SAY "apples" = "oranges" /\ This displays "ð". \/

fruit = "oranges" /\ This assigns the string "oranges" \/

/\ to the variable FRUIT. \/

SAY howmuch fruit /\ This displays "5 oranges". \/

SAY howmuch fruit = "4 oranges" /\ This displays "ð". \/

SAY howmuch fruit = "5 plums" /\ This displays "ð". \/

SAY howmuch fruit = "5 oranges" /\ This displays "1". \/

If you compare a number with a character string which is not a number, REXX will
compare them as character values.

SAY 5 = 'Five' /\ This displays "ð". \/

SAY 'ðððððFðð' = 'ðððððEðð' /\ This displays "ð". \/

SAY 'ð' = 'ðððððEðð' /\ This displays "1". \/

SAY 'ðEðððððð' = 'ððððððEð' /\ This displays "1". \/

Note that the last two examples use numbers in exponential notation.

Using the NUMERIC FUZZ Instruction: The NUMERIC FUZZ instruction can be
used to control the precision used to make comparisons. Sometimes comparisons
are too precise, as shown in the following examples:

/\ Expressions evaluated using default REXX precision. \/

SAY 1 + 1/3 /\ This displays '1.333333333'. \/

SAY 1 + 1/3 + 1/3 + 1/3 /\ This displays '1.999999999'. \/

SAY 1 + 1/3 + 1/3 + 1/3 = 2 /\ This displays 'ð'. \/

To make comparisons less precise than the default REXX arithmetic, you can use
the NUMERIC FUZZ instruction.

The following are examples:

/\ These are expressions evaluated without approximation allowed. \/

SAY 1 + 1/3 + 1/3 + 1/3 = 2 /\ This displays 'ð'. \/

SAY 1 + 1/3 + 1/3 + 1/3 < 2 /\ This displays '1'. \/

/\ These are expressions evaluated with approximation allowed. \/

NUMERIC FUZZ 1

40 REXX/400 Programmer’s Guide V4R1

SAY 1 + 1/3 + 1/3 + 1/3 = 2 /\ This displays '1'. \/

SAY 1 + 1/3 + 1/3 + 1/3 < 2 /\ This displays 'ð'. \/

Using the NUMERIC FUZZ Built-in Function: You can check the current setting
of NUMERIC FUZZ by using the FUZZ function. FUZZ will return 0, by default.
This means that 0 digits will be ignored during the comparison operation.

/\ Display the current NUMERIC FUZZ setting \/

SAY 'The current FUZZ setting is' FUZZ() /\ Displays 'ð', by default. \/

Using Strict Comparison Operators
By using strict comparison operators you can specify character-by-character
comparison, with no padding of either of the strings. The operators do not try to
perform numeric comparisons because they test for an exact match between the
two strings.

To find out if two strings are identical, use the strictly equal operator (==).

/\ Set the value of variables Y and Z, and make comparisons \/

x="2"

z="+2"

SAY y = z /\ This displays '1' true. \/

SAY y ¬= z /\ This displays 'ð' false. \/

SAY y == z /\ This displays 'ð' false. \/

SAY y ¬== z /\ This displays '1' true. \/

You can also determine whether two strings are strictly greater than or strictly less
than each other by using the strictly greater than (>>) and strictly less than (<<)
operators. The following are examples:

SAY "cookies" >> "carrots" /\ This displays '1' true. \/

SAY "$1ð" >> "nine" /\ This displays 'ð' false. \/

SAY "steak" << "fish" /\ This displays 'ð' false. \/

SAY " steak" << "steak" /\ This displays '1' true. \/

The last comparison shows that " steak" is strictly less than "steak" since the
blank is lower in the sequence of characters.

The strict comparison operators are especially useful if you are interested in leading
blanks, trailing blanks, and zeros that are not significant zeros.

Using Logical Operators
The logical operators change and combine expressions. To change an expression
by reversing its evaluated result, use the NOT operator. To combine comparisons
to get the overall true or false value of more than one condition, use the logical
operators AND and OR.

 Chapter 4. Using REXX Expressions 41

The logical operators are shown in the following table:

Operator Operation Result

& AND Returns 1 if both terms are true

| Inclusive OR Returns 1 if either them is true

&& Exclusive OR Returns 1 if either, but not both, is
true

Prefix \ Logical NOT 1 becomes 0 and 0 becomes 1

Prefix ¬ Logical NOT 1 becomes 0 and 0 becomes 1

Using the AND Operator
To write an expression that is true when every one of a set of comparisons is true,
use the AND (&) operator. The following is an example:

IF ready = "YES" & steady = "RIGHT"

THEN SAY "GO"

To result in 1 and continue with the THEN clause, both conditions must be met.
Otherwise, nothing will happen.

Here are some other examples:

SAY (3=3) & (5=5) /\ This displays '1'. \/

SAY (3=4) & (5=5) /\ This displays 'ð'. \/

SAY (3=3) & (4=5) /\ This displays 'ð'. \/

SAY (3=4) & (4=5) /\ This displays 'ð'. \/

Using the OR Operator
To write an expression that is true when at least one of a set of comparisons is
true, use the inclusive OR (|) operator. The following is an example:

IF ready = "YES" | steady = "RIGHT"

THEN SAY "GO"

In this case, if either or both expressions are true, GO will be displayed.

Here are some other examples:

SAY (3=3) | (5=5) /\ This displays '1'. \/

SAY (3=4) | (5=5) /\ This displays '1'. \/

SAY (3=3) | (4=5) /\ This displays '1'. \/

SAY (3=4) | (4=5) /\ This displays 'ð'. \/

Using Exclusive OR: The exclusive OR (&&) operator evaluates to 1 when one
and only one of the expressions in the comparison is true. The following is an
example:

city = 'NEW YORK'

state = 'NJ'

local = 'NO'

IF city = 'NEW YORK' && state = 'NJ'

THEN local = 'YES'

SAY local /\ This displays 'NO'. \/

42 REXX/400 Programmer’s Guide V4R1

Using the NOT Operator
The NOT operator is placed in front of a term and changes the value from true (1)
to false (0) or false to true. REXX uses two different characters as the NOT
operator: ¬ and \. These have identical meanings; you can use either one. REXX
defines two different characters for the same meaning to accommodate the
differences between the many systems and keyboards REXX supports.

SAY ¬ ð /\ This displays '1'. \/

SAY ¬ 1 /\ This displays 'ð'. \/

SAY ¬ 2 /\ This gives a syntax error. \/

SAY ¬ (3 = 3) /\ This displays 'ð'. \/

/\ \/

fruit = "oranges" /\ This assigns "oranges" to \/

/\ the variable FRUIT. \/

SAY fruit = "oranges" /\ This displays '1'. \/

SAY fruit = "apples" /\ This displays 'ð'. \/

SAY ¬(fruit = "apples") /\ This displays '1'. \/

SAY ¬(fruit = "oranges") /\ This displays 'ð'. \/

The NOT operator reverses the result of any comparison it precedes. An
expression that REXX otherwise evaluates as 1 is negated (its evaluation changed
to 0) when you put the NOT operator in front of it. And, similarly, an expression
that REXX would otherwise evaluate as 0 is evaluated as 1 when preceded by a
NOT operator.

 Combining Comparisons
Long expressions can be formed using combinations of operators, as shown in the
following example:

IF ((savings_balance > 1ðððð | checking_balance > 5ððð),

& customer_years > 5) && customer_status = 'SPECIAL' THEN

SAY 'This customer is a candidate for changing status'

The logical expression be TRUE, evaluate as 1, if:

� Either of the two balances is over the limit, and the customer_years variable is
over 5, while the customer_status variable is not SPECIAL

� Both balances are below the limits

� The customers_years variable is not over 5, while the customer_status variable
is SPECIAL.

Using Function Calls as Expressions
REXX provides many built-in functions which can be used in expressions. A list of
these functions is in Appendix B, “REXX Built-in Functions” on page 139. For a
complete description of all of the REXX built-in functions, see the REXX/400
Reference. It provides additional information on using built-in and other types of
functions.

A built-in function will always return a value.

 Chapter 4. Using REXX Expressions 43

A function call can be written anywhere in an expression. The interpreter performs
the computation named by the function and returns a result, which is then used in
the expression in place of the function call. If REXX finds

symbol(expression...)

in an expression, with no space between the last character of the symbol and the
left parenthesis, the interpreter assumes that symbol is the name of a function and
that this is a call to the SYMBOL function.

The result returned by a function depends on what is inside the parenthesis. When
the value of the function has been calculated, the result is put back into the
expression in place of the function call.

Using Expressions in Instructions
The REXX/400 Reference contains an alphabetic list of all REXX instructions and
their syntax. You can use an expression if expression is specified.

Using Expressions as Commands
REXX processes your program one clause at a time. The interpreter examines
each clause to determine if the clause is a keyword instruction, a variable
assignment, a label, or a null clause. If it is none of these, then REXX evaluates
the entire clause as an expression and passes the result on to the current
command environment. It is left to the current command environment to process
the command.

Chapter 7, “Understanding Commands and Command Environments” on page 79
discusses this in more detail.

44 REXX/400 Programmer’s Guide V4R1

Chapter 5. Using REXX Instructions

REXX provides an extensive set of instructions which control your program. This
chapter provides you with information about using REXX instructions, including:

� Learning About Keyword Instructions
� Using Structured Programming
� Understanding Programming Style
� Using the INTERPRET Instruction
� Using a REXX Program Instead of a CL Program.

Learning About Keyword Instructions
REXX instructions are recognized as instructions by keywords. When a REXX
keyword begins a clause, and it is not an assignment, REXX interprets it as an
instruction. Keywords themselves are not reserved, because they can be used in
other places within a clause. The complete set of keywords is listed in
Appendix A, “REXX Keywords” on page 137 and are defined in the REXX/400
Reference.

Instructions like IF, SELECT, and DO also have subkeywords. For example, the IF
instruction can begin a clause which also might include the subkeyword THEN or
ELSE. THEN or ELSE at the beginning of a clause will not be recognized as part
of an instruction, but when used after the IF keyword they will be recognized as
part of the complete instruction.

Using Structured Programming
REXX programs can contain many different statements. Primarily, they will be
either a single list of instructions or a number of lists of instructions connected by
instructions indicating which list should run next.

The instructions that direct how the program runs are called control instructions.
The direction a program can take by using control instructions can be any of the
following:

Branches Branches allow you to select one of several lists of
instructions to run. Branches are controlled by the IF and
SELECT instructions.

Loops Loops allow you to repeat a list of instructions for a specified
number of times or until a stated condition is satisfied while a
condition is true. Loops are controlled by the DO instruction.

Calls Calls can be made to subroutines to perform a separate,
well-defined task that might be necessary within a larger
task. You use the CALL instruction to tell REXX to run a
subroutine, then return and run the next sequential
instruction. Calls to subroutines are discussed in Chapter 8,
“Using REXX Functions and Subroutines” on page 99.

Transfers of Control Transfers of control are made in order to continue the
program from a different point within the program itself.
Transfers of control are controlled by the SIGNAL instruction.

 Copyright IBM Corp. 1997 45

This type of control is discussed in “Using Condition
Trapping” on page 133.

Exits Exits leave your program unconditionally and stop all
processing. The EXIT instruction exits the program and can
also pass back a value when written in the form EXIT
expression. The valid values for expression are determined
by how the program was called. For more information on
exits and the EXIT instruction, see the REXX/400 Reference.

A single program can contain one or all of the control instructions. Controls can
also be nested within controls.

In the sections that follow, the control instructions are discussed along with ways to
combine them.

 Using Branches
Branches allow you to control how your program runs by setting conditions and
indicating what set of instructions should run under those conditions. Branches can
be built using the IF instruction along with the THEN and ELSE keyword. The
SELECT instruction can also be used.

Using the IF Instruction
The following example shows a very simple branch:

/\ This is an example of a simple IF...THEN...ELSE instruction. \/

IF a = c THEN

SAY "It's true; a does equal c."

ELSE

SAY "No, a does NOT equal c."

If a = c the SAY "It's true; a does equal c." instruction is run. If a = c is not
true, the SAY "No, a does NOT equal c." instruction is run.

Using IF...THEN adds a branch of instructions to run when the controlling
expression is true.

IF expression
THEN instruction

By adding the ELSE subkeyword, you can indicate two branches. One set of
instructions will run when the condition is true. One set of instructions will run
when the condition is not true.

IF expression
THEN instruction1
ELSE instruction2

To put a list of instructions, rather than a single instruction, after the THEN
subkeyword or ELSE subkeyword, you must group the instructions using the DO
instruction with the END subkeyword.

DO

 instruction1
 instruction2
 instruction3
END

46 REXX/400 Programmer’s Guide V4R1

A DO...END instruction tells REXX to treat the instructions between them as a
single instruction. Without a DO...END grouping, only the first instruction following
the THEN or ELSE subkeyword will run.

/\ This is an example of an IF-THEN-ELSE with multiple instructions \/

/\ in both the true part and the false part. \/

IF a = c

THEN

 DO

SAY "It's true; a does equal c."

SAY "This message is in the true part of the instruction"

 END

ELSE

 DO

SAY "No, a does NOT equal c."

SAY "This message is in the false part of the instruction"

 END

It is possible to use multiple IF instructions to control program flow without
DO...END instruction groups. This program shows how the IF...THEN...ELSE
instruction may be used together without DO and END. In REXX, an ELSE
subkeyword belongs to the first IF instruction if there is no other ELSE subkeyword
associated with it.

/\ Suppose the variables weather and distance are set to some \/

/\ correct values. This program will use the two variables to \/

/\ suggest a plan for the day. \/

IF weather = "FINE"

THEN

IF distance = "NEAR"

THEN SAY "We will walk to our customer's office"

ELSE SAY "We will drive to our customer's office"

ELSE SAY "We will stay inside and do paperwork today"

Using the SELECT Instruction
A simple IF...THEN...ELSE instruction allows two sets of instructions to be run
depending on the condition. The SELECT instruction expands this to many choices
depending on the condition.

SELECT

WHEN expression1 THEN instruction1
WHEN expression2 THEN instruction2
WHEN expression3 THEN instruction3

...

 OTHERWISE

 instruction
 instruction
 instruction

...

END

The SELECT instruction performs the following:

� If expression1 is true, instruction1 is run. After this, processing continues with
the instruction following the END.

 Chapter 5. Using REXX Instructions 47

� If expression1 is not true, then expression2 is tested. If it evaluates as true,
then instruction2 is run and processing continues with the instruction following
the END.

� If none of the expressions are true, then processing continues with the
instruction following the OTHERWISE subkeyword.

The OTHERWISE subkeyword must be used if there is any possibility that all of the
WHEN expressions could be evaluated as not true.

As with the IF instruction, to tell REXX to run a list of instructions which follow a
THEN subkeyword, you must enclose those instructions within a DO...END group.
A DO...END group is not required after the OTHERWISE subkeyword.

Example 1: Here is a simple example of the SELECT instruction.

/\ This program requests the user to enter a whole \/

/\ number from 1 through 12 and replies with the \/

/\ number of days in that month. \/

/\ --- \/

/\ Get input from user. \/

/\ --- \/

DO UNTIL DATATYPE(Month,WHOLE),

& month >= 1 & month <= 12

SAY "Enter the month as a number from 1 through 12"

 PULL month

END

/\ --- \/

/\ Calculate the days in month. \/

/\ --- \/

SELECT

WHEN month = 9 THEN days = 3ð

WHEN month = 4 THEN days = 3ð

WHEN month = 6 THEN days = 3ð

WHEN month = 11 THEN days = 3ð

WHEN month = 2 THEN days = "28 or 29"

 OTHERWISE

days = 31

END

SAY "There are" days "days in Month" month

Example 2: This program uses the SELECT instruction, along with other controls.
It requests the user to provide the age and gender of a person. As a reply, it
displays the status of that person. People under the age of 5 are BABIES. Those
aged 5 through 12 are BOYS or GIRLS. Those aged 13 through 19 are
TEENAGERS. All the remaining are either a MAN or a WOMAN.

48 REXX/400 Programmer’s Guide V4R1

/\--- \/

/\ Get input from user. \/

/\--- \/

DO UNTIL DATATYPE(age,NUMBER) & age >= ð

SAY "What is the person's age?"

 PULL age

END

DO UNTIL gender = "M" | gender = "F"

SAY "What is the person's gender (M or F)?"

 PULL gender

END

/\--- \/

/\ DETERMINE STATUS \/

/\ \/

/\ Input: \/

/\ AGE Assumed to be ð or a positive number. \/

/\ GENDER "M" is male. Anything else is female. \/

/\ \/

/\ Result: \/

/\ STATUS Possible values: BABY, BOY, GIRL, TEENAGER, \/

/\ MAN, WOMAN. \/

/\--- \/

SELECT

WHEN age < 5 THEN status = "BABY"

WHEN age < 13 THEN

 DO

IF gender = "M"

THEN status = "BOY"

ELSE status = "GIRL"

 END

WHEN age < 2ð THEN status = "TEENAGER"

 OTHERWISE

IF gender = "M"

THEN status = "MAN"

ELSE status = "WOMAN"

END

SAY "This person should be counted as a" status

Example 3: The following two programs show the same operation. The first uses
the SELECT instruction, and the second uses IF...THEN...ELSE instructions.

/\ This program requests the user to enter two words and \/

/\ says which one is higher, using the SELECT instruction.\/

SAY "Enter two words"

PULL word1 word2 .

SELECT

WHEN word1 = word2

THEN SAY "The words are the same",

"or numerically equal"

WHEN word1 > word2

THEN SAY "The first word is higher"

 OTHERWISE

SAY "The second word is higher"

END

 Chapter 5. Using REXX Instructions 49

Example 4: The same result can be achieved using the IF instruction.

/\ This program requests the user to supply two words and \/

/\ says which is higher, using the IF instruction. \/

SAY "Enter two words"

PULL word1 word2 .

IF word1 = word2

THEN SAY "The words are the same",

"or numerically equal"

ELSE DO

IF word1 > word2

THEN SAY "The first word is higher"

ELSE SAY "The second word is higher"

END

The choice is up to you, however, SELECT will generally be the easier instruction
to use where more than two conditions are needed.

Using the NOP Instruction
A THEN or ELSE subkeyword must be followed by an instruction. In those cases
where you intend for nothing to run, you can use the NOP instruction. The
following two examples show how to use NOP with the SELECT instruction and the
IF instruction.

Using NOP with SELECT:

SAY "Where is the harbor?"

PULL where

SELECT

WHEN where = "AHEAD" then NOP

WHEN where = "PORT BOW" THEN SAY "Turn left"

WHEN where = "STARBOARD BOW" THEN SAY "Turn right"

OTHERWISE SAY "Not understood"

END

Using NOP with IF:

IF gas = "FULL" & oil = "SAFE" & window = "CLEAN"

THEN NOP

ELSE SAY "Find a gas station."

 Using Loops
The DO...END instruction lets you group instructions so the list of instructions runs
once. The DO instruction used with other subkeywords lets your instructions run
repeatedly. When a program repeats a list of instructions, it is looping. A loop can
occur a specific number of times, as long as a particular condition is true, until
some condition is satisfied or until the user wants it to stop.

50 REXX/400 Programmer’s Guide V4R1

Looping with Counters
To repeat a loop a specific number of times use:

DO exprr
 instruction1
 instruction2
 instruction3

...

END

where

exprr
is the expr ession for repetitor which must evaluate to a whole number. This is
the number of times the loop will be repeated.

The following is an example:

/\ This is the simplest form of a repetitive DO in REXX. \/

DO 5

"SNDUSRMSG MSG('You will see this message five times')"

END

Using Indexes: Each pass through a loop can be numbered. That number can
be used as a variable in your program.

DO name = expri TO exprt
 instruction1
 instruction2
 instruction3

...

END

where

name
is the control variable called a counter. You can use it in the body of the loop.
Its value is changed each time you pass through the loop, and may be
changed by the program itself.

expri
is the expr ession for the initial value. It is the value you want the counter to
have the first time through the loop.

exprt
is the expr ession for the to value. It is the value you want the counter to have
the last time through the loop. The loop will end if the next iteration will put the
counter above the exprt value.

 Chapter 5. Using REXX Instructions 51

Example 1: The following program shows how REXX programs can perform a
loop using an integer loop counter.

DO i = 1 to 5

"SNDUSRMSG MSG('This is message" i "of five')"

END

Example 2: The following example shows how the iterations can be affected by
the program itself, in this case by reassigning the value of i.

DO i = 1 to 3

i = 5

END /\ This program will only run one time. \/

Example 3: You can use the counter to calculate something different each time
through the loop. In the following example, the counter is called COUNT and
calculates the width of each row of stars.

/\ This program displays a triangle. \/

/\ The user is asked to specify the height of the\/

/\ triangle. \/

SAY "Enter the height of the triangle",

" (a whole number between 3 and 15)."

PULL height

SELECT

WHEN \DATATYPE(height,WHOLE) THEN SAY "Try again"

WHEN height < 3 THEN SAY "Too small"

WHEN height > 15 then say "Too big"

 OTHERWISE

DO count = 1 to height by 2 /\ Draw a triangle.\/

 SAY CENTER(COPIES('\',count),height)

 END

SAY "This is a triangle with a width of "height'.'

END

After you leave the loop, you can still refer to the counter. It will always exceed the
value of the TO expression, exprt.

The counter can be incremented by values other than 1, which is the default. To
specify some other value, use the following:

DO name = expri TO exprt BY exprb
...

END

where

exprb
is the expr ession for by and gives the number that is to be added to name at
the bottom of the loop.

The following is an example of a DO FOREVER loop:

DO name = expri BY exprb
...

END

52 REXX/400 Programmer’s Guide V4R1

Example 4: REXX allows decimal numbers, as well as integers, as loop indexes.
Also, the index can be stepped in the negative direction. The following example
will loop ten times, in reverse:

DO i = 8.3 to 7.4 by -.1

SAY 'The value of the loop index is' i

END

Looping Using Conditions
Loops can run based on conditions you set. DO WHILE loops run as long as a
condition is true. DO UNTIL loops run until a given condition is true. DO
FOREVER loops end with a LEAVE, RETURN, or EXIT instruction.

Using DO WHILE: To create a loop that repeats its list of instructions as long as
a given condition is true, use DO WHILE.

DO WHILE exprw
 instruction1
 instruction2
 instruction3

...

END

where

exprw
is the expr ession for while and is an expression that must result in 0 or 1.

Example 1: The condition is tested at the top of the loop, before the instruction list
is run. If the condition is false, the instructions will not be run. If it is true, the
instructions will run.

/\ This program uses a binary search to locate the zero of an \/

/\ arbitrary increasing function, f. \/

SAY "Enter the minimum and maximum ends of the range"

PULL min max

SAY "Enter the maximum allowable error"

PULL maxerr

DO WHILE max - min > maxerr

guess = (max + min) / 2

IF F(guess) > ð then max = guess

ELSE min = guess

 END

SAY "The final guess was" guess

Using DO UNTIL: To create a loop which runs until a condition is true, use DO
UNTIL.

DO UNTIL expru
 instruction1
 instruction2
 instruction3

...

END

 Chapter 5. Using REXX Instructions 53

where

expru
is the expr for until and is an expression that, when evaluated, must give a
result of 0 or 1.

Example 1: When you use a DO UNTIL instruction, the test occurs at the bottom
of the loop. This means that the instruction list enclosed by the DO UNTIL will
always run at least once.

/\ This program uses a binary search to locate the zero of an \/

/\ arbitrary increasing function, f. \/

SAY "Enter the minimum and maximum ends of the range"

PULL min max

SAY "Enter the allowable distance from ð for the final function value"

PULL maxerr

guess = (max + min) / 2

DO UNTIL ABS(F(guess)) < maxerr

IF F(guess) > ð

THEN max = guess

ELSE min = guess

guess = (max + min) / 2

END

SAY "The final guess was" guess "which produced a function value of" F(guess)

Example 2: DO UNTIL can be used to check input. The following example uses
the DATATYPE function to make certain that the user only enters a number:

/\ An example with numbers only. \/

DO UNTIL DATATYPE(entry,NUM)

SAY "Enter a number"

SAY "(or press Enter alone to quit):"

 PULL entry

IF entry = "" THEN EXIT

END

This loop will always run at least once, even if the variable ENTRY is already a
number. It will continue to run until you either enter a number or press the Enter
key alone.

Using DO FOREVER: In some cases, the DO instruction may not be the place
where you want to set conditions. DO FOREVER is provided for such instances.
In the following example, the loop is ended by an EXIT instruction, which ends the
entire program.

SAY 'This program will add up a series of numbers which you give it'

SAY 'Enter a null line to end the program'

sum = ð

54 REXX/400 Programmer’s Guide V4R1

DO FOREVER

SAY 'Enter a number'

 PULL number

IF number = '' THEN EXIT

sum = sum + number

SAY 'Total so far is' sum

END

The LEAVE instruction immediately ends a loop, and will move processing to the
instructions following the END subkeyword.

SAY 'This program will add up a series of numbers which you give it'

SAY 'Enter a null line to end the program'

sum = ð

DO FOREVER

SAY 'Enter a number'

 PULL number

IF number = '' THEN LEAVE

sum = sum + number

END

SAY 'The final total is' sum

Combining Iterative and Conditional Loops
REXX lets you combine repetitive and conditional loop controls on a single DO
instruction. For example, suppose an array called data has been set up with
elements 1 through 10, and we want to search for an entry that may be present.

DO i = 1 to 1ð WHILE data.i <> target

END

IF i = 11 THEN SAY 'Sorry, target was not found'

ELSE SAY 'Target was found in entry number' i

In an iterative loop, the loop will run until the loop counter variable passes the value
of the to expression. When combining iterative and conditional loops, as in the
example, the iterative part of the loop works the same way. So, in the example, if
the item you are searching for is not found, the variable i will have the value 11
when the loop stops. If the item is found, the variable i will have the value of the
item number containing the target.

Using the ITERATE Instruction
The ITERATE instruction bypasses all remaining instructions in the loop and test
the ending conditions.

ITERATE can be introduced by a THEN or ELSE subkeyword, and REXX will
proceed with the operations usually done at the bottom of the loop. If an UNTIL
condition has been specified, it is tested. If a counter has been specified, it is
incremented and tested. If a WHILE condition has been specified, it is tested.

If tests indicate that the loop is still active, usual processing then continues from the
top of the loop.

 Chapter 5. Using REXX Instructions 55

Example 1: The following program shows how the ITERATE instruction is
normally used with an IF or SELECT instruction.

DO j = 1 to limit by delta

 instruction1
 instruction2
 IF condition
 THEN DO

 instruction3
 instruction4
 ITERATE j

 END

 instruction5
 instruction6
END

Example 2: The following program asks for a list of words, which will be put into
an array. If a number is entered, the number is not put into the array.

count = ð

DO FOREVER

SAY 'Enter a word (no numbers allowed), or a null line to end.'

 PULL word

IF DATATYPE(word,NUMBER) THEN ITERATE

IF word = '' THEN LEAVE

count = count + 1

list.count = word

END

SAY count 'words were entered. Here is the list.'

DO i = 1 to count

SAY i list.i

END

Using the LEAVE Instruction
Conditional loops will continue to run as long as the condition is satisfied. The
LEAVE instruction can be used to end processing of a loop, as shown in “Using DO
FOREVER” on page 54. However, a program can be made up of loops within
loops. You may want to be able to specify when control should pass from a
particular loop. To do this, you will need to give the loop a name and use the
LEAVE instruction. When the LEAVE instruction is run, control will move to the
instructions which follow the END subkeyword, as shown in the following example:

DO outer = 1 /\ OUTER is the name of the loop. \/
...

END

56 REXX/400 Programmer’s Guide V4R1

To specify this as the loop to leave, put the name of its counter after the LEAVE
instruction. The following is an example:

DO outer = 1
...

/\ This is a DO FOREVER because BY 1 is the default. \/

DO UNTIL DATATYPE(answer,WHOLE)

SAY "Enter a number.",

"When you have no more data, enter a blank line."

 PULL answer

IF answer = "" THEN LEAVE outer

 END

...

/\ Process answer. \/

END

/\ Come here when there is no more data.\/

Understanding Programming Style
REXX is a free format language. It has very few requirements for how source code
is entered. The following programs illustrate how the REXX rules for formatting a
program are very flexible. It shows the same IF...THEN...ELSE in four different
ways.

REXX clauses must end with a semicolon, unless the clause ends at the end of the
line. The semicolon is implied when each clause begins on a separate line.

Example 1: This example explicitly ends each clause with a semicolon. The
entire program can be all on one line.

IF a=c THEN;DO; SAY 'a=c'; SAY 'This is hard to read';END;ELSE;DO;

SAY 'a \= c'; SAY 'This is hard to read'; END

Example 2: This example shows how the same instructions can be spread out
over many lines. In this example, each line is a complete clause.

IF a=c

THEN

DO

 SAY 'a=c'

SAY 'This is hard to read'

END

ELSE

DO

 SAY 'a\=c'

SAY 'This is hard to read'

END

 Chapter 5. Using REXX Instructions 57

Example 3: This example shows each clause spread out over more than one line.
To tell REXX to read to the end of a clause when it is spread over more than one
line, use the continuation character, as shown.

IF,

a,

=,

c

THEN

DO

 SAY,

 'a=c'

 SAY,

'This is harder to read'

END

ELSE

DO

 SAY,

 'a\=c'

 SAY,

'This is harder to read'

END

Example 4: This example shows a compromise in style, using indentation to
make the program easier to read.

IF a=c

 THEN DO

 SAY 'a=c'

SAY 'This is easier to read'

 END

ELSE

 DO

 SAY 'a\=c'

SAY 'This is easier to read'

 END

You can choose whatever programming style you prefer. It is a good idea to use
indentation to make it easier to see the beginning and end of branches or loops.

Using the INTERPRET Instruction
The INTERPRET instruction evaluates an expression and processes it as if it were
part of the text of the program.

Example 1: This example shows how interpret can be used to write a simple
calculator program.

/\ Simple calculator program. \/

/\ For instance, if the user enters (1+2) \ 3, the answer will be 9.\/

SAY 'Enter the expression you want to have evaluated'

PULL expr

INTERPRET "answer =" expr

SAY 'The answer is' answer

58 REXX/400 Programmer’s Guide V4R1

Example 2: In many cases where the interpret instruction is used, there is another
way to reach the same result. For example, this program uses SELECT to choose
which of several programs to call, based on the day of the week.

today = DATE(Weekday)

SELECT

WHEN today = 'Sunday' THEN CALL Sunday

WHEN today = 'Monday' THEN CALL Monday

WHEN today = 'Tuesday' THEN CALL Tuesday

WHEN today = 'Wednesday' THEN CALL Wednesday

WHEN today = 'Thursday' THEN CALL Thursday

WHEN today = 'Friday' THEN CALL Friday

WHEN today = 'Saturday' THEN CALL Saturday

END

The same operation can be performed using the INTERPRET instruction, which
makes it shorter.

today = DATE(Weekday)

INTERPRET "Call" today

Example 3: Since INTERPRET lets you create instructions dynamically, you can
sometimes combine two instructions by using it. The same action taken in
“Example 2” on page 23 can be accomplished by using the INTERPRET instruction
within the loop.

DO i = count + 1 to 2 by -1

INTERPRET "ARRAY."i "=ARRAY."i-1

END

count = count + 1 /\ Update the new count. \/

array.1 = newvalue /\ Store the new value. \/

Using a REXX Program Instead of a CL Program
In many cases, REXX can perform tasks which might otherwise be done by CL
programs. The first example below shows a simple CL program. Following it is a
REXX program which performs the same operation.

PGM PARM(&LIBRARY)

DCL &LIBRARY \CHAR 1ð

IF (&LIBRARY \EQ ' ') THEN(CHGVAR &LIBRARY 'MYLIB')

 DSPLIB &LIBRARY

ENDPGM

Here is the same operation written in REXX:

ARG libname /\ Get the parameter (if any).\/

IF libname = '' THEN libname = "MYLIB" /\ If none is provided, make \/

/\ the parameter "MYLIB". \/

"DSPLIB" libname /\ Issue the DSPLIB command. \/

EXIT

This example uses commands which are discussed in Chapter 7, “Understanding
Commands and Command Environments” on page 79.

 Chapter 5. Using REXX Instructions 59

60 REXX/400 Programmer’s Guide V4R1

Chapter 6. Using REXX Parsing Techniques

Parsing is a way of taking data from various input sources and assigning it to
variables. This chapter covers the information you need to use parsing within a
REXX program, including:

 � Understanding Parsing
� Parsing with Patterns
� Using String Functions.

 Understanding Parsing
Parsing lets you split an input string into component substrings which, in turn, are
assigned to one or more variables.

The input string can come from any of the following sources:

� An argument passed to the program
� A command line argument
� An item on the REXX external data queue
� Input from the file STDIN
� The contents of a variable
� The result of an expression

 � System information.

This variety of input sources, along with the many ways that the input can be
analyzed and controlled, makes parsing one of the most powerful features of
REXX.

Parsing is performed by using a REXX clause made up of two parts:

1. The PARSE instruction , in any of its various forms, denotes the source of the
input text.

2. A parsing template is a list of symbols that describe how the input text is to be
broken up. In its simplest form, the template is a list of variables to which
words of input text are assigned.

Using the PARSE Instruction
The form of PARSE instruction that you use depends on the source of input. There
are seven PARSE forms which correspond to the potential sources of input. The
optional UPPER subkeyword will convert the input text into uppercase. UPPER
can be used with any form of PARSE.

 Copyright IBM Corp. 1997 61

The ways the PARSE instruction can be used are shown below.

Using PARSE ARG: The PARSE ARG instruction takes as input an argument
string passed to the current REXX program, subroutine, or function in which the
PARSE ARG instruction is used. The following is an example:

/\ The argument(s) passed to a program can be parsed. \/

PARSE ARG arg1

SAY 'The first argument passed to this program is' arg1

The instruction PARSE UPPER ARG can also be given as simply, ARG. The
following is an example:

/\ The ARG instruction is a short version of PARSE UPPER ARG. \/

PARSE UPPER ARG input1

ARG input2

SAY 'Parse Upper Arg got' input1

SAY 'Arg got' input2

IF input1 == input2 THEN

SAY 'The two different instructions work the same'

ELSE

SAY 'You will never see this message.'

PARSE ARG input3

SAY 'PARSE ARG got' input3 /\ Displays the mixed case \/

/\ version of the input. \/

Using PARSE PULL: The PARSE PULL instruction takes as input the next item
on the REXX external data queue. If the queue is empty, PARSE PULL instead
reads a line from the file STDIN. This means that PARSE PULL can be used to
accept interactive input from a program user, as shown in the following example:

/\ Keyboard input may be read two different ways. The first, \/

/\ PARSE PULL will read a line from the REXX queue if anything is \/

/\ there, and from the keyboard if the queue is empty. \/

SAY 'Enter a line of input from your keyboard.'

PARSE PULL line

SAY 'You entered' line

The instruction PARSE UPPER PULL, which translates the input to uppercase
characters, can also be given as simply, PULL, as shown in the following example:

/\ The PULL instruction is a short version of PARSE UPPER PULL. \/

test = 'This is a test'

DO 3

PUSH test /\ Puts three lines on the external data queue. \/

END

PARSE UPPER PULL input1

PULL input2

SAY 'Parse Upper Pull got' input1 /\ This displays 'THIS IS A TEST'.\/

SAY 'Pull got' input2 /\ This displays 'THIS IS A TEST'.\/

IF input1 == input2 THEN

62 REXX/400 Programmer’s Guide V4R1

SAY 'The two different instructions work the same'

ELSE

SAY 'You will never see this message.'

PARSE PULL input3

SAY 'Parse Pull got' input3 /\ This displays 'This is a test'.\/

Using PARSE LINEIN: The PARSE LINEIN instruction takes as input the next line
from STDIN, regardless of whether there is anything in the REXX external data
queue. Otherwise, it performs the same operations as PARSE PULL.

The following is an example:

PUSH 'Parse linein will not touch this line.'

SAY 'Enter another line of input from your keyboard.'

PARSE LINEIN line

SAY 'You entered' line

PARSE PULL firstline

/\ This will contain 'Parse linein will not touch this line.'. \/

Using PARSE VALUE: The PARSE VALUE instruction takes as input the
evaluated result of an expression.

The following is an example:

PARSE VALUE 1 + 2 with result

SAY 'The value' result 'was calculated by the Parse value instruction'

The WITH subkeyword separates the expression from the template. Templates are
discussed further in “Using Templates” on page 64.

Using PARSE VAR: The PARSE VAR instruction takes as input the contents of a
named variable.

The following is an example:

var1 = 1 + 2

PARSE VAR var1 newvariable

SAY 'The value' newvariable 'was assigned to Var1'

/\ This displays 'The value 3 was assigned to Var1'. \/

The contents can be converted to uppercase by using the UPPER keyword:

/\ PARSE VAR EXAMPLE \/

mixed='This Data Started Out In Mixed Case'

PARSE UPPER VAR mixed uppervar

SAY 'The uppercase version of' mixed

SAY 'is' uppervar

This will display:

The uppercase version of This Data Started Out In Mixed Case

is THIS DATA STARTED OUT IN MIXED CASE

 Chapter 6. Using REXX Parsing Techniques 63

Using PARSE VERSION: The PARSE VERSION instruction takes as input a
string that describes the name, language level, and version date of the REXX
interpreter itself.

The following is an example:

PARSE VERSION ver

SAY 'The version of REXX you are using is' ver

Using PARSE SOURCE: The PARSE SOURCE instruction takes as input a string
that described the REXX program that is currently being run.

The following is an example:

/\ Information about the program being run is available. \/

PARSE SOURCE src

SAY 'The identifying information for this program is' src

 Using Templates
The examples shown with each of the PARSE instruction variations have used the
simplest form of template, a single variable. But there is far more to parsing than
simply capturing data from a given source and assigning it in its entirety to a single
variable. Parsing lets you selectively assign specific components of the input string
to a number of variables.

By default, REXX breaks up the input string into words and assigns them, in order,
to the given list of variables. Here is an example of a PARSE instruction with a
template of five variables:

/\ Parsing a string into five variables. \/

PARSE VALUE "I love my AS/4ðð system" WITH var1 var2 var3 var4 var5

/\ At this point the variables are set as follows: \/

/\ var1 = "I" \/

/\ var2 = "love" \/

/\ var3 = "my" \/

/\ var4 = "AS/4ðð" \/

/\ var5 = "system" \/

In this case, the number of variables in the template exactly corresponds to the
number of words in the input string. Notice what happens when there are fewer
words in the input string than there are variables in the template:

/\ Parsing the same string into six variables. \/

PARSE VALUE "I love my AS/4ðð system" WITH var1 var2 var3 var4 var5 var6

/\ At this point the variables are set as follows: \/

/\ var1 = "I" \/

/\ var2 = "love" \/

/\ var3 = "my" \/

/\ var4 = "AS/4ðð" \/

/\ var5 = "system" \/

/\ var6 = "" \/

The sixth variable is assigned an empty string. It is important to note that all
variables listed in a parsing template are assigned new values. If no value is
available for a given variable, it is assigned a null (empty) string.

64 REXX/400 Programmer’s Guide V4R1

The reverse occurs if there are fewer variables in the template than words in the
input string. The last variable in the template is assigned all of the remaining words
in the string:

/\ Parsing the same string into just two variables. \/

PARSE VALUE "I love my AS/4ðð system" WITH var1 var2

/\ At this point the variables are set as follows: \/

/\ var1 = "I" \/

/\ var2 = "love my AS/4ðð system" \/

/\ Variables var3, var4, var5 are not changed. \/

In this example, variable VAR1 is assigned the word "I" but this time VAR2, the
last template variable, is assigned the entire remainder of the string.

 Using Placeholders
It is not necessary to have a variable for every word in a parsing template. To
ignore a string at a given position, use a period as a dummy variable, which is
called a placeholder.

/\ Select just the fourth and sixth words. \/

sentence = "I want to learn to program in REXX."

PARSE VAR sentence . . . word4 . word6 .

/\ The variables now read: \/

/\ sentence = "I want to learn to program in REXX." \/

/\ word4 = "learn" \/

/\ word6 = "program" \/

A period at the end of a template can be used to discard all unwanted words at the
end of a string. If you do not have a period at the end of the template, you will get:

/\ Discard the end of a string. \/

PARSE VALUE "Programming is easier in REXX" WITH word1 word2

/\ The result is: \/

/\ word1 = "Programming" \/

/\ word2 = "is easier in REXX" \/

But that leaves too many words in WORD2. To get just the second word and
discard the remaining words, you can use a period at the end of the template.

PARSE VALUE "Programming is easier in REXX" WITH word1 word2 .
/\ Now the result is: \/

/\ word1 = "Programming" \/

/\ word2 = "is" \/

Parsing Variables and Expressions
In practice, of course, a program is rarely called on to parse a literal string. Usually
the purpose is to analyze information that is unknown when the program is written.
This is done by parsing variables.

The following is an example:

/\ Parsing a variable. \/

PARSE VALUE "I love my AS/4ðð system" WITH var1 var2

/\ var1 = "I" \/

/\ var2 = "love my AS/4ðð system" \/

/\ Variables var3, var4, var5 are unchanged \/

/\ Now parse the variable var2 \/

PARSE VAR var2 var3 var4 var5

 Chapter 6. Using REXX Parsing Techniques 65

/\ Now the variables are as follows: \/

/\ var1 = "I" (no change) \/

/\ var2 = "love my AS/4ðð system" (no change) \/

/\ var3 = "love" \/

/\ var4 = "my" \/

/\ var5 = "AS/4ðð system" \/

Note closely the difference in syntax for the PARSE VAR instruction. The first
variable named is the source of the input string, and the variables that follow make
up the template.

The source variable can also be used in the template. It can be reassigned a new
value in the same PARSE instruction for which it provides the input string.

/\ Parsing a variable also named in the template. \/

var1 = "I love my AS/4ðð system"

PARSE VAR var1 var1 var2

/\ Now: \/

/\ var1 = "I" \/

/\ var2 = "love my AS/4ðð system" \/

/\ And again: \/

PARSE VAR var2 var2 var3

/\ Now: \/

/\ var1 = "I" (no change) \/

/\ var2 = "love \/

/\ var3 = "my AS/4ðð system" \/

The following is another example of PARSE VAR:

/\ Pulling off one word at a time and leaving the rest in the \/

/\ original variable. \/

DO i = 1 to words(var1)

PARSE VAR var1 var2 var1

 SAY var2

END

/\ This loop will display each word in var1 one at a time and \/

/\ keep the rest in the original variable. \/

Using Special Parsing Techniques
The parsing capabilities of REXX allow you many different ways to work with
sources of input text. Some special parsing methods can expand the ways you can
use parsing.

Parsing With PARSE SOURCE
The PARSE SOURCE instruction identifies the program which is currently running.
The following examples give some additional uses of the PARSE SOURCE
instruction within a program.

The following example program gives a brief help message, which includes the
name of the program. Instead of hard-coding the name, it is obtained by the REXX
PARSE SOURCE instruction. If the program is renamed, the help message will not
have to be changed.

66 REXX/400 Programmer’s Guide V4R1

/\ Using REXX PARSE SOURCE. \/

PARSE SOURCE . . membername filename libname

SAY 'This is a REXX program named' membername 'in' libname'/'filename'.'

SAY 'This program demonstrates how the REXX "Parse Source" instruction'

SAY 'can be used to find out the name of the program.'

The following example program uses the PARSE SOURCE instruction to find out
whether it was called from another program or from the command line. It
calculates the sum of two numbers, and if it was called from another program, it
returns the sum as the function value. If it was called as a command, it shows the
sum on the display.

/\ Using PARSE SOURCE. \/

PARSE SOURCE . howcalled .

sum = Arg(1) + Arg(2)

IF howcalled = 'COMMAND' THEN SAY 'The answer is' sum

ELSE RETURN sum

The following program issues one of four commands to display information about a
file on the system. There is one command for each of the four IBM System
Application Architecture systems. The PARSE SOURCE instruction determines
which system this program is running on, which indicates the appropriate command
to issue. An argument is passed to the program giving the names of the objects or
files to display.

PARSE SOURCE system .

ARG fileid /\ Get the file name. \/

SELECT

WHEN system = 'OS/4ðð' Then 'DSPFD FILE('fileid')'

WHEN system = 'CMS' Then 'LISTFILE' fileid '(LABEL)'

WHEN system = 'OS/2' Then 'DIR' fileid

WHEN system = 'TSO' Then 'LISTDS' fileid 'STATUS'

OTHERWISE SAY 'Sorry, I don''t know the file-listing command on this system'

END

Parsing With PARSE VERSION
PARSE VERSION gets information about the particular version of REXX which you
are running. This is particularly useful when writing programs which will run on
different levels of REXX.

For example, if you write a REXX program which uses instructions or functions
which only became available with version 3.48 of REXX, you might want to include
the following lines in the program to make sure it can run on another system where
you are not sure of the version:

PARSE VERSION . ver .

IF ver < 3.48 THEN

 DO

SAY 'This program must run on REXX version 3.48 or greater'

 EXIT 99

 END

 Chapter 6. Using REXX Parsing Techniques 67

Using Parsing in a Program
The following is an example of a program using parsing to extract and enumerate
the words in a user-supplied sentence. Notice how the PARSE PULL and PULL
instructions get user input and how PARSE VAR is called within a loop to break the
input string into its component words.

/\ Creates an array from the words in a sentence. \/

/\ Ask the user to type a sentence. \/

SAY "Type a sentence:"

PARSE PULL sentence

/\ For example, if the user types "This is a test", \/

/\ that string is assigned to the variable SENTENCE. \/

/\ Parse the input into an array of compound variables. \/

/\ With each iteration of the loop, a word is removed \/

/\ from the string in the variable SENTENCE and assigned \/

/\ to the next variable in the array. \/

DO count = 1 UNTIL sentence = ''

PARSE VAR sentence word.count sentence

 END

/\ Now the variables (as set by the PARSE VAR loop) are: \/

/\ count = 4 \/

/\ word.1 = "This" \/

/\ word.2 = "is" \/

/\ word.3 = "a" \/

/\ word.4 = "test" \/

/\ sentence = "" \/

/\ Display words by number. \/

DO FOREVER

number = ""

SAY "Enter a number:"

DO WHILE DATATYPE(number,n) = ð /\ Stay in this loop \/

PULL number /\ until a number is \/

 END /\ typed. \/

IF number <= ð THEN LEAVE

IF number > count

 THEN DO

SAY "There were only" count "words...",

"Try again or type ð (zero) to quit."

 ITERATE

 END

 ELSE DO

SAY "Word" number "is '"||word.number||"'.",

"Try again or type ð (zero) to quit."

 END

 END

EXIT

68 REXX/400 Programmer’s Guide V4R1

Parsing With Patterns
Strings can be parsed using patterns instead of words. By using patterns in the
parsing template, you can denote other characters or strings as delimiters or select
portions of the input string by specifying character positions.

There are three types of patterns which can be used with parsing:

 � Literal
 � Positional
 � Variable.

Using Literal Patterns
To specify delimiting characters other than spaces in a parsing template, put the
character in quotation marks.

For example, to parse a string of four data items separated by a slash character (/),
put the slash in quotation marks:

/\ Parsing with literal pattern. Assume that the \/

/\ string passed to this program is RED/DARK BLUE/GREEN/YELLOW. \/

PARSE ARG data1 "/" data2 "/" data3 "/" data4 "/" .

/\ The variables are set to: \/

/\ data1 = "RED" \/

/\ data2 = "DARK BLUE" \/

/\ data3 = "GREEN" \/

/\ data4 = "YELLOW" \/

The patterns, denoted by the slash characters, are removed from the parsed data.
The fourth slash, having no match in the input string, is ignored (as was the
placeholder period). Where REXX finds no match for a literal pattern, the end of
the string is assumed. Note how this rule applies to a slightly different argument:

/\ Same ARG instruction, same template; this time the \/

/\ string passed to this program is RED/DARK BLUE/GREEN,YELLOW. \/

PARSE ARG data1 "/" data2 "/" data3 "/" data4 "/" .

/\ The variables are set to: \/

/\ data1 = "RED" \/

/\ data2 = "DARK BLUE" \/

/\ data3 = "GREEN,YELLOW" \/

/\ data4 = "" \/

If no match for the third slash is found, REXX assigns the remainder of the string to
the preceding variable data3 and sets data4 to null.

A literal pattern can have more than one character. As with a single character, the
pattern is removed from the parsed data if it is found. If it is not found, all
succeeding variables are set to null.

 Chapter 6. Using REXX Parsing Techniques 69

/\ Using a literal parsing pattern with more than one character. \/

input = "This string has many words in it."

PARSE VAR input beginning "has many words" ending

/\ Now, the variables are set as follows: \/

/\ beginning = "This string" \/

/\ ending = "in it." \/

This brings us back to the general rule about parsing templates. Where no literal
pattern is provided, one variable immediately follows another. The delimiter is
assumed to be one or more blanks, which are removed.
The string is separated into words:

/\ Using a literal parsing pattern with more than one character. \/

input = "This string has many words in it."

PARSE VAR input word1 word2 "has many words" word3 word4

/\ Now, the variables are set as follows: \/

/\ word1 = "This" \/

/\ word2 = "string" \/

/\ word1 = "in" \/

/\ word2 = "it." \/

To parse by one and only one space, and thereby preserve leading and trailing
spaces, use a quoted blank (" ") as a literal pattern.

Here is an example of how to parse the argument string when REXX is called as
the CPP of a CDO. The definition for the CDO is as follows:

CMD PROMPT('TESTS REXX AS A CDO')

PARM KWD(LIB) TYPE(\CHAR) LEN(1ð) +

 PROMPT('LIBRARY NAME')

PARM KWD(FILE) TYPE(\CHAR) LEN(1ð) +

 PROMPT('FILE NAME')

PARM KWD(MBR) TYPE(\CHAR) LEN(1ð) +

 PROMPT('MEMBER NAME')

When REXX is called as a result of this command, the argument string will look like
the following, although the values within the parentheses will match the entries you
specify.

LIB(libname) FILE(filename) MBR(mbrname)

You can parse these parameters as shown in the following example:

/\ Using PARSE ARG to parse arguments passed by CDO. \/

PARSE ARG "LIB("libname")" "FILE("filename")" "MBR("mbrname")" .

SAY 'LIBRARY NAME PASSED WAS' libname

SAY 'FILE NAME PASSED WAS' filename

SAY 'MEMBER NAME PASSED WAS' mbrname

RETURN

Using Positional Patterns
As its name implies, a positional pattern uses character position to break up a
string. Positional patterns are especially useful in applications where the format,
rather than the content, is known. They offer precise selection of text, regardless of
the kind of delimiters, or the absence of delimiters altogether. Any number in a
template is presumed to refer to a character position.

70 REXX/400 Programmer’s Guide V4R1

� If the number is unsigned (without + or - signs), then it refers to an absolute
position in the input string. The number specifies the position where the next
segment of parsed text begins.

� If the number is preceded by a plus or minus sign, then it refers to a relative
position or offset from the current character position. The current position is
determined as the template runs from left to right.

Parsing by positional pattern is especially useful for selecting data from a string
with fixed format, as in a data file. Here is an example:

/\ Parsing an address record by character position. \/

/\ Assume an address file with the following field lengths: \/

/\ last name 15 \/

/\ first name 1ð \/

/\ street address 14 \/

/\ city 1ð \/

/\ state 2 \/

/\ zip code 5 \/

/\ \/

/\ Thus, the variable ADDRESS might contain the string: \/

/\ "SMITH JOHN 123 MELODY LN. NEW FALLS NY 11919" \/

PARSE VAR address lnname 16 fname 26 street 4ð city 5ð state 52 zip

/\ The variables are set as: \/

/\ lname = 'SMITH ' \/

/\ fname = 'JOHN ' \/

/\ street = '123 MELODY LN.' \/

/\ city = 'NEW FALLS ' \/

/\ state = 'NY' \/

/\ zip = '11919' \/

A pattern that is specified using relative positions can move backward and forward
through the string from any given point. In this way, a given delimiter might be
located by a literal pattern and a preceding text segment picked out.

salesrec = "SMITHHKð12345USDSAMWOBANK "

PARSE VAR salesrec "USD" -8 loc +2 rev "USD" custtlx

/\ loc = 'HK' \/

/\ rev = 'ð12345' \/

/\ custtlx = 'SAMWOBANK ' \/

Using Variables in Patterns
Variable patterns may be used as another way of parsing data or assigning
variables.

Suppose you are reading a file which has variable length data fields in it, containing
a name and an address. Each record starts with two numbers which give the
column numbers that the name and address data start in. You could read the
column numbers and break out the name and address in one instruction.

dataline = '1ð 3ð Mary Ellen Friedmann123Main Street'

PARSE VAR dataline,

namecol addrcol =(namecol) name =(addrcol) address

 Chapter 6. Using REXX Parsing Techniques 71

If the file instead had the column number and the width of the name, with the
address immediately following the name, the data could still be broken out in one
instruction.

dataline = '1ð 2ð Mary Ellen Friedmann123Main Street'

PARSE VAR dataline,

namecol namewidth =(namecol) name +(namewidth) address

Literal patterns also may be used as variables. Suppose a text-processing program
has to read a character string that begins with an arbitrary delimiter character, and
is divided into two parts by a second occurrence of that delimiter character. The
following is an example:

string ='/First part/Second part'

PARSE VAR string delim +1 part1 (delim) part2

This program will set part1 to First part and part2 to Second part. Delim will be
set to /.

Using String Functions
One group of the built-in functions provided by REXX are string functions. These
functions allow you to obtain information about a string or to process text in other
ways. REXX built-in functions are also discussed in “Using REXX Built-in
Functions” on page 104.

For the complete syntax of each of the functions described here, see the REXX/400
Reference.

 Managing Strings
Several of the REXX string functions manage strings by breaking up or changing
the input strings. These functions manage substrings, make changes to strings, or
format strings.

Using the Substring Functions
These functions return a piece of a larger string:

SUBSTR: The SUBSTRING function gets a piece of a string by numbered
position.

SUBSTR("I Love my AS/4ðð system",3,4) /\ This returns "Love". \/

LEFT: The LEFT function gets the leftmost substring and can add trailing spaces.

LEFT("I Love my AS/4ðð system",6) /\ This returns "I Love".\/

RIGHT: The RIGHT function gets the rightmost substring and can add leading
spaces.

RIGHT("I Love my AS/4ðð system",6) /\ This returns "system".\/

72 REXX/400 Programmer’s Guide V4R1

WORD: The WORD function gets a word from a string (by number).

WORD("I Love my AS/4ðð system",2) /\ This returns "Love". \/

SUBWORD: The SUBWORD function gets a substring beginning with a given
word.

SUBWORD("I Love my AS/4ðð system",2,1) /\ This returns "Love". \/

Using the String Editing Functions
These functions change a string:

INSERT: The INSERT function inserts a substring into a string.

INSERT("Wonderful ","I Love my AS/4ðð system",1ð)

/\ This returns "I Love my Wonderful AS/4ðð system". \/

OVERLAY: The OVERLAY function overlays part of one string with another.

OVERLAY("LOVE","I like my AS/4ðð system",3)

/\ This returns "I LOVE my AS/4ðð system".\/

REVERSE: The REVERSE function exchanges the characters in a string, end for
end.

REVERSE("I Love my AS/4ðð system") /\This returns "metsys ðð4/SA ym evoL I".\/

COPIES: The COPIES function replicates a string a given number of times.

COPIES("Love",3) /\ This returns "LoveLoveLove".\/

DELSTR: The DELSTR function deletes a substring from the input string.

DELSTR("I Love my Wonderful AS/4ðð system",11,1ð)

/\ This returns "I Love my AS/4ðð system".\/

DELWORD: The DELWORD function performs the same function as DELSTR, but
begins with a given word.

DELWORD("I Love my Wonderful AS/4ðð system",4,1)

/\ This returns "I Love my AS/4ðð system".\/

Using the String Formatting Functions
These functions change a string by adding or removing spaces or other characters.
The LEFT and RIGHT functions can also add spaces.

SPACE: The SPACE function adds or deletes intervening spaces (or other
delimiting characters) between words.

SPACE("I Love my AS/4ðð system",2)

/\ This returns "I Love my AS/4ðð system".\/

 Chapter 6. Using REXX Parsing Techniques 73

CENTER: The CENTER function centers the input string within a large string of a
given length, and adds spaces or other characters.

CENTER("I Love my AS/4ðð system",3ð)

/\ This returns " I Love my AS/4ðð system ".\/

The CENTRE function can also be used. It is exactly the same as the CENTER
function.

STRIP: The STRIP function removes leading or trailing spaces, or both from a
string.

STRIP(" I Love my AS/4ðð system ")

/\ This returns "I Love my AS/4ðð system".\/

 Measuring Strings
Several built-in functions are available to give information about a string. They can
determine the length of a string, compare strings, or locate particular positions
within a string.

Using the LENGTH, WORDS, and WORDLENGTH Functions
Each of these functions returns a number which is the count of characters or words
in a string.

LENGTH: The LENGTH function counts the characters in a string.

LENGTH("I Love my AS/4ðð system") /\ This returns 23.\/

WORDS: The WORDS function counts the words in a string.

WORDS("I Love my AS/4ðð system") /\ This returns 5. \/

WORDLENGTH: The WORDLENGTH function returns the length of a word,
specified by number.

WORDLENGTH("I Love my AS/4ðð system",2) /\ This returns 4. \/

Using the VERIFY, ABBREV, and COMPARE Functions
Each of these functions returns a number which results from a comparison of two
strings.

VERIFY: The VERIFY function determines whether one string is made up of
characters in another string. It can return the position of either the first matching
character or first non-matching character, which is the default.

VERIFY("I Love my AS/4ðð system"," ABCDEFGHIJKLMNOPQRSTUVWXYZ")

/\ This returns 4.\/

ABBREV: The ABBREV function returns 1 if one string matches the leading
characters of another.

ABBREV("Love","Lo") /\ This returns 1 (true). \/

74 REXX/400 Programmer’s Guide V4R1

COMPARE: The COMPARE function tells if two strings are identical.

COMPARE("I Love my AS/4ðð system","I Love my AS/4ðð system")

/\ This returns ð for exact match. \/

COMPARE("I Love my AS/4ðð system","I Like my AS/4ðð system")

/\ This returns 4 for position where matching ended.\/

Using the POS, LASTPOS, WORDINDEX, and WORDPOS
Functions
Each of these functions returns a number which indicates the position of the
character for which you are looking.

POS: The POS function searches one string from the beginning looking for a
given substring and returns the position of that substring.

POS("Love", "I Love my AS/4ðð system") /\ This returns 3. \/

POS("like","I Love my AS/4ðð system") /\ This returns ð since a \/

/\ given string was not found. \/

If a given string is not found, a zero is returned

LASTPOS: The LASTPOS function searches the same as POS except from the
end, backward.

LASTPOS(" ","I Love my AS/4ðð system") /\ This returns 17.\/

WORDINDEX: The WORDINDEX function finds a word by number and returns the
initial character position.

WORDINDEX("I Love my AS/4ðð system",2) /\ This returns 3. \/

WORDPOS: The WORDPOS function finds a word by searching for the word itself
and returns its initial character position.

WORDPOS("Love","I Love my AS/4ðð system") /\ This returns 2. \/

Using REXX Programs as String Functions
A REXX program may be called as a string function, as shown in the examples
which follow.

Example 1: This example turns an input number into a string in currency format.
It uses PARSE VAR with a literal pattern and PARSE VALUE with character
position pattern.

 Chapter 6. Using REXX Parsing Techniques 75

/\ This function takes a number and returns a string \/

/\ in comma-delimited dollar format. \/

/\ For example, DOLLAR(1234.5555) returns '$1,234.56'. \/

ARG number /\ Get the argument NUMBER. \/

/\ Round off the argument to the nearest cent. Then \/

/\ parse the result into the integer (DOLLARS), the \/

/\ decimal point, and the decimal fraction (CENTS). \/

PARSE VALUE format(number,,2,ð) WITH dollars "." cents

dollars = ABS(dollars) /\ Make DOLLARS positive. \/

backin = REVERSE(dollars) /\ Reverse the digits in \/

/\ DOLLARS so you can parse \/

/\ them into groups of 3 \/

/\ (see REVERSE(), above). \/

backout = "" /\ Initialize a variable \/

/\ for re-concatenation. \/

DO WHILE LENGTH(backin) > 3 /\ While three digits or \/

/\ more remain in BACKIN, \/

PARSE VAR backin group 4 backin /\ take each group of three \/

/\ remaining digits, and \/

backout = backout||group||"," /\ then join it to the end \/

/\ of the BACKOUT variable \/

/\ and add a comma. \/

 END

backout = backout||backin||"$" /\ Concatenate the digits \/

/\ that remain; add '$'. \/

IF number < ð THEN /\ If the argument was \/

backout = backout||"-" /\ negative, restore the \/

/\ minus sign. \/

bucks = REVERSE(backout)||"."||cents /\ Restore the proper order \/

/\ of the digits; add the \/

/\ decimal point and cents. \/

RETURN dollars /\ Return the string. \/

Example 2: This example shows how the DOLLAR function can be used in a
program.

/\ Using the DOLLAR function \/

total = ð

DO FOREVER

SAY "Enter amount:"

 PULL entry

IF ¬DATATYPE(entry,n) /\ If entry is not a valid number,\/

THEN LEAVE /\ leave the loop. \/

total = total + entry

SAY "Total = " DOLLAR(total) /\ Display total in dollar format.\/

END

SAY entry "is not a number. Returning to SYSTEM."

76 REXX/400 Programmer’s Guide V4R1

Example 3: Here is a useful search-and-replace string function. Notice how the
second PARSE instruction uses a variable as a pattern.

/\ Function: CHANGE(string,old,new) \/

/\ \/

/\ \/

/\ Changes all occurrences of “old” in “string” \/

/\ to "new". If “old” == “”, then “new” is prefixed \/

/\ to “string”. \/

PARSE ARG string, old, new

IF old==“” THEN RETURN new||string

out=“”

DO WHILE POS(old,string) ¬= ð

PARSE VAR string prepart (old) string

 out=out||prepart||new

END

RETURN out||string

Example 4: This example shows how to call the CHANGE function in a program.

/\ This is an example using the CHANGE function. \/

direction = "north by northwest"

wrong = "north"

right = "south"

SAY direction

SAY change(direction,wrong,right) /\ This says "south by southwest".\/

 Chapter 6. Using REXX Parsing Techniques 77

78 REXX/400 Programmer’s Guide V4R1

Chapter 7. Understanding Commands and Command
Environments

Commands are a special type of clause, which are passed to another program to
run. In order to work with commands, this chapter covers the following topics:

 � Understanding Commands
� Understanding Command Environments
� Understanding the Error and Failure Conditions.

 Understanding Commands
A command is an expression which is passed to a command environment to run.
The default command environment is CL. You can specify an environment which
you define, by using the command interface discussed in the REXX/400 Reference.

Understanding Clause Interpretation
Single clauses consisting of just an expression are instructions known as
commands. The expression is evaluated and the result is passed as a command
string to an environment external to REXX. If the external environment is the CL
command environment, which is the default, then information about pseudo-CL
variables occurring in this result is also passed. For information on pseudo-CL
variables, see “Understanding Pseudo-CL Variables” on page 88.

REXX interprets a clause as a command if it is not a comment, keyword instruction,
variable assignment, or label. Any line that starts with a literal string, a string within
quotation marks, will be treated as a command. A line that just contains a variable,
a function call, or a more complicated expression will also be treated as a
command. For example, the following line in a REXX program will issue a
command because it is just a line containing a REXX variable:

STRSEU

This would presumably run the Start Source Entry Utility (STRSEU) command,
although the actual result could be different because:

� STRSEU is a variable and could be set to some other value.

� REXX may be sending commands to an environment other than CL.

It is a good practice to put commands within quotation marks, except for those
parts where you are using variable values. This will give you a slight performance
improvement, because the number of variables REXX must find is reduced. Putting
your command names in quotation marks will also prevent confusion between
REXX instructions and commands with the same names as REXX instructions. In
particular, REXX has a CALL instruction and CL has a CALL command. When you
want to use the REXX CALL instruction, the format is:

55──CALL─ ──┬ ┬──────────── ─5%
 └ ┘─parameters─

and when you want to specify the CALL command, the format is:

55──"CALL"─ ──┬ ┬─────────── ─5%
 └ ┘─paramters─

 Copyright IBM Corp. 1997 79

Understanding Command Environments
Associated with running every REXX program is a command environment. When
the REXX interpreter finds a command within the REXX program, control will be
given to the command environment which in turn runs the command and then
returns control to REXX to continue running the program.

There are two types of command environments available to REXX:

1. System-defined command environments. These include:

� Control language (CL) command environment, called COMMAND. The
command environment lets you issue CL commands, and will be the only
called environment used by most REXX programs.

� Common Programming Interface (CPI) Communications environment,
called CPICOMM. The CPICOMM environment, which is the
communications element of the SAA Common Programming Interface
(CPI), lets you issue CPI-Communications commands. For more
information on CPI Communications, see the SAA Common Programming
Interface Communications Reference.

� Structured Query Language (SQL) environment, called EXECSQL. The
EXECSQL environment lets you use SQL, which is the standard database
interface language used by DB2/400. For more information on SQL
statements, see the DB2 for AS/400 SQL Reference. For more information
on the EXECQSL environment, see the DB2 for AS/400 SQL Programming.

Note: To use the EXECSQL environment on a system which does not
have the DB2/400 Query Management and SQL Development Kit Version 3
LPP, 5716-ST1, installed, see the DB2 for AS/400 SQL Programming for
special instructions for handling the REXX program.

2. User-defined command environments. These are application programs which
are written to handle commands issued by REXX programs. You identify these
in library/object format. For example, ‘MYLIB/FRED’ would refer to program
FRED in library MYLIB. The default for library is *LIBL.

Programmers can create special names for their command environments by
using exit programs and the REXX system exit interface to handle commands
issued in REXX programs. In this case, the name of the environment does not
have to be a program name. It will be passed to the exit programs as two
ten-character strings. A slash character in the name divides it into the two
strings. The maximum length for the name of the environment is 21 characters.
For more information about system exits, see the REXX/400 Reference.

REXX programs start out with an initial command environment, specified when the
REXX interpreter is started. If the REXX program was run by using the Start REXX
Procedure (STRREXPRC) command, the initial command environment can be
explicitly set with the CMDENV parameter or be allowed to default to COMMAND.
The command environment may be changed within the REXX program by using the
ADDRESS instruction. The command environment can be checked with the
ADDRESS built-in function.

80 REXX/400 Programmer’s Guide V4R1

Using the ADDRESS Instruction
The ADDRESS instruction changes the command environment from within a REXX
program or send a single command to a specified command environment.

The ADDRESS instruction takes the form:

55──ADDRESS──environment─ ──┬ ┬──────────── ─5%
 └ ┘─expression─

Where

environment is the destination of the string

expression is evaluated and the string passed to the environment.

For example, you could run the Display Library List (DSPLIBL) command as follows:

ADDRESS COMMAND “DSPLIBL”

Using the ADDRESS instruction with only the name of an environment makes a
lasting change in the destination of commands.

ADDRESS 'MYLIB/FRED'

SAY 'Now commands issued in this program go to the program MYLIB/FRED'

'DO WHAT I MEAN' /\ DO WHAT I MEAN is passed to MYLIB/FRED \/

/\ as a command. \/

ADDRESS COMMAND /\ This sets the command destination back to \/

/\ the default command environment (CL). \/

/\ When the ADDRESS instruction is used with the name of a user \/

/\ command program, and a command given, one command is sent \/

/\ to the command environment but it does not make a lasting change \/

/\ to the destination of commands. \/

ADDRESS 'MYLIB/FRED' 'DO WHAT I MEAN'

/\ DO WHAT I MEAN is passed to MYLIB/FRED \/

/\ as a command. \/

'ANOTHER COMMAND FOR FRED'

/\ This will get a return code of CPFððð1, because "ANOTHER" is not \/

/\ a CL command, and CL is the destination of commands because of \/

/\ an ADDRESS COMMAND. \/

 Understanding Messages
Communication between programs occurs through messages. CL commands and
commands to user-defined command environments may send messages to report
their status or indicate errors.

For more information about the types of messages and when they are used, see
the CL Programming.

Messages issued by commands may set return codes and raise conditions in your
REXX programs. The following section discusses how your REXX programs can
find out when messages are issued by commands, and how the REXX programs
can handle the messages.

 Chapter 7. Understanding Commands and Command Environments 81

Understanding Return Codes
Any command environment must send a return code back to REXX following the
completion of a command. The return code provides an indication of whether the
command was run successfully or not. REXX makes the return code available to
the REXX program in the special REXX variable RC. By convention, a zero return
code means that the command was run successfully while a nonzero return code
means an error or some abnormal condition occurred. REXX places no restriction
on what a nonzero return code can be other than limiting the value to 500 bytes in
length. Any nonzero value, whether numeric or character, can be used. REXX
also does not interpret the meaning of a nonzero return code. The meaning of
such a return code is determined strictly by the command environment that
returned the value.

Understanding Return Codes From the CL Command
Environment
If an error is found in a CL command while it is being run, an escape message will
be sent back to the user of the command. REXX automatically monitors for all
escape messages. Should an escape message be sent from the CL command
environment, the return code will be set to the message ID that is associated with
that message. Thus, the special REXX variable RC will be set to the message ID.
Moreover, the escape message will be on the message queue that is associated
with REXX. The REXX program may obtain this message plus any accompanying
diagnostic messages by using the Receive Message (RCVMSG) command. To
receive messages that were sent by the CL command environment, the message
queue should be specified by using the *SAME * value for the PGMQ parameter of
the RCVMSG command. If no escape message is sent from the CL command
environment, the special variable RC will be set to a zero return code.

The following is a simple example of checking for a zero return code from a CL
command:

"SNDMSG MSG('HELLO') TOUSR(AMIR)"

IF RC = ð THEN SAY 'The SNDMSG command ran correctly.'

ELSE SAY 'The SNDMSG command did not run correctly.'

A CL command can also cause the CL command environment to send a notify or
status message. Such messages are not automatically treated as error conditions.
The default action taken on messages of these two types is to ignore them. Unless
an escape message is later sent, the special variable RC will be set to a zero
return code, and the message will not be left on the message queue.

However, the REXX program can control how messages of these types are to be
treated. The SETMSGRC built-in function can cause some or all notify and status
messages to be treated the same as escape messages. Any notify or status
message that is identified through the use of the built-in function will cause the
special variable RC to be set to the associated message ID. Moreover, the notify
or status message will be on the message queue associated with REXX. From
there it can be received in the same way an escape message can be.

If the SETMSGRC function is used, and a status or notify message is received, the
program which sent the status or notify message ends and REXX raises the
ERROR condition.

82 REXX/400 Programmer’s Guide V4R1

It is important to note that if the special variable RC is zero after a CL command is
run, there is no message on the message queue that can be received. If RC is
nonzero, there is at least one message that can be received. Thus, before an
attempt is made to receive a message, RC should be tested to see if it contains a
nonzero value.

For some messages, you can decide what to do by just looking at the message
number in RC. The following program tests the return code and decides what error
has occurred:

libname = 'MYLIB'

DO UNTIL RC = ð

 'CHGCURLIB CURLIB('libname')'

 SELECT

WHEN RC = ð THEN NOP

WHEN RC = 'CPF211ð' THEN DO

SAY 'Sorry, Library' LIBNAME 'not found.'

SAY 'Enter a new library name.'

 PULL libname

 END

WHEN RC = 'CPF2176' THEN DO

SAY 'Library' LIBNAME 'is damaged.'

SAY 'This program is stopping now.'

 EXIT

 END

 OTHERWISE

SAY 'The CHGCURLIB command set Return Code' RC

SAY 'This program is stopping now.'

 EXIT

 END

END

Understanding Return Codes from the CPICOMM Command
Environment
The REXX variable RC indicates either a successful call to the
CPI-Communications interface, or failure to call to the CPI-Communications
interface. If the call to the CPI-Communication interface completed successfully,
then the REXX RC variable will be set to zero. If the call to the
CPI-Communications interface was not successful, then the REXX RC variable will
be set to a negative number and the failure condition raised.

The following table lists the possible negative values for the REXX RC variable.

 Chapter 7. Understanding Commands and Command Environments 83

Only when the REXX RC variable is set to zero have the parameters to the
CPICOMM command environments been updated with valid values.

Negative
Value

Brief
Description

(-3) CPICOMM command does not exist or was spelled incorrectly

(-9) Out of Memory Failure

(-10) Too many parameters specified on the CPICOMM command

(-11) Too few parameters specified on the CPICOMM command

(-14) Internal system error occurred in the CPICOMM environment

(-24) Unable to fetch value for REXX variable

(-25) Unable to set value to REXX variable

(-28) Variable name contains restricted character(s)

Understanding Return Codes from the EXECSQL Command
Environment
The REXX variable RC indicates either a successful call to the SQL interface or a
failure to call the SQL interface. If the call completes successfully, the REXX RC
variable is set to zero. Any warnings will be shown with a positive RC variable. If
the call cannot be completed, the REXX RC variable is set to a negative number
and the failure condition is raised. For more information on the EXECSQL
environment, see the DB2 for AS/400 SQL Programming.

Note: To use the EXECSQL environment on a system which does not have the
DB2/400 Query Management and SQL Development Kit Version 3 LPP, 5716-ST1,
installed, see the DB2 for AS/400 SQL Programming for special instructions for
handling the REXX program.

The following table lists the possible negative values for the REXX RC variable.

For a REXX RC value of +10 or -10, you may analyze the problem further by
looking at the generated SQLCA variables. For more information on values
returned in the REXX RC variable for the EXECSQL environment, the SQL
communications area (SQLCA), and the SQL description area (SQLDA), refer to
the DB2 for AS/400 SQL Reference.

Negative
Value

Brief
Description

(+10) An SQL warning resulted, signaled by a + SQLCODE or a
non-blank entry in SQLWARN.

(0) Successful execution

(-10) An SQL error resulted from execution of an SQL statement

(-100) A REXX interface error resulted. The SQLCA information is invalid.

84 REXX/400 Programmer’s Guide V4R1

Understanding Return Codes from User-Defined Command
Environments
A user-defined command environment must return a return code, just like the CL
command environment does. However, the user-defined command environment
has two methods by which it can accomplish this task:

1. The defined interface between REXX and the command environment lets a
program directly return a value. The value that is returned is placed in the
special variable RC. In this case, because the value was returned directly,
there is no message on the message queue that the REXX program can
receive.

2. The program for the user-defined command environment can send an escape
message, or a status or notify message identified by SETMSGRC, and not
return a value directly. In this case, the message ID for the message is placed
into the variable RC. The message is left on the message queue and can be
received.

When a user-defined command environment is being used, the REXX program
should not attempt to receive a message unless the command environment sends
messages. A nonzero return code may result, without a message on the queue to
receive. Messages should be received only when the return code is nonzero, and
the current command environment is one that sends messages.

Understanding the Error and Failure Conditions
A REXX program cannot monitor for exceptions that are sent from a command
environment. Rather, REXX automatically monitors for such exceptions and then
informs the REXX program that an exception has occurred. The special variable
RC is one way that the REXX program is informed. A second way is through the
use of conditions.

All exceptions that can be received from a command environment are divided into
two REXX conditions: ERROR and FAILURE. Usually, the ERROR or FAILURE
condition will occur in response to action taken by the command environment.
However, the following are two cases where REXX itself will raise a FAILURE
condition:

� The program that is to be called for a command environment cannot be found
by REXX.

� The program for a command environment cannot be used because the user of
REXX is not authorized to that program.

Conditions and condition traps are discussed further in Chapter 11, “Understanding
Condition Trapping” on page 131.

Understanding CL Command Environment Conditions
An exception from the CL command environment can cause either the ERROR or
FAILURE condition to occur. If the exception was CPF0001 or CPF9999, the
FAILURE condition will occur. Any other exception will cause the ERROR condition
to occur.

 Chapter 7. Understanding Commands and Command Environments 85

If the SETMSGRC built-in function was used, any notify or status messages that
were identified when the function was used will also cause the ERROR condition to
occur.

Understanding CPICOMM and EXECSQL Command Environment
Conditions

An exception from the CPICOMM command environment will cause a failure
condition to occur. A negative value will be placed in the REXX RC variable
indicating the type of exception. For additional details, see “Understanding Return
Codes from the CPICOMM Command Environment” on page 83.

An exception from the EXECSQL command environment will cause a failure
condition to occur. A negative value will be placed in the REXX RC variable and
details will be available in the SQLCA variables. For additional details, see
“Understanding Return Codes from the EXECSQL Command Environment” on
page 84.

Understanding User-Defined Command Environment Conditions
A user-defined command environment has two methods that can be used to cause
the ERROR or FAILURE condition to occur in the REXX program:

� The command environment can indicate directly through the defined interface
with REXX that either the ERROR or FAILURE condition is to occur.

� The command environment can send an escape message. This will cause the
FAILURE condition to occur. If the SETMSGRC built-in function was used, any
notify or status messages that were identified when the function was used will
also cause the FAILURE condition to occur.

Understanding the Control Language (CL) Command Environment
The control language (CL) command environment must be used whenever a REXX
program contains CL commands. This command environment is the default
environment. It can also be specified directly as a command environment on the
Start REXX Procedure (STRREXPRC) command, the QREXX interface, and on the
ADDRESS instruction.

Before using a CL command in your REXX program, you should make sure that it
is allowed. You can confirm this in one of two ways:

1. You can check the syntax diagram for a CL command in the CL Reference.
This will show the *IREXX value for the ALLOW parameter if the command can
be used in an interactive REXX program or a *BREXX value for the ALLOW
parameter if the command can be used in a batch REXX program. Either or
both values can be specified, along with other values for the ALLOW
parameter.

2. For a CL command that you create using the Create Command (CRTCMD)
command, the ALLOW parameter must specify the *IREXX or *BREXX values
in order for the command to be used within the REXX program.

When a CL command is used in a REXX program, it will have the same effect as
when the command is used in a CL program. However, because REXX programs
operate differently than CL programs, two areas require special attention:

� CL commands that return values

86 REXX/400 Programmer’s Guide V4R1

� CL commands that are sensitive to program boundaries.

Understanding CL Command Parameters
When a CL command is run from within a REXX program, values for the various
parameters on the command must be specified or default values, as determined by
the command, will be used. Within the REXX program, there are four general ways
that parameter values can be specified:

1. As constant values

2. As quoted constant values

3. By assigning a value to a REXX variable and then using that variable within an
expression thereby allowing REXX to build the final command using the content
of the variable

4. By assigning the value to a pseudo-CL variable and using that variable within
the command thereby effectively passing the variable rather than just the value
of the variable.

A constant value is a value that is given directly within the command as a constant.
Moreover, the value is not enclosed within single quotation marks. A numeric value
can be specified this way — either as a standard REXX number or as a number in
REXX exponential notation. A character value can also be specified this way.
However, with a character value, two transformations are performed before the
value is used by the command:

1. Any leading and trailing blank are removed

2. The value is then folded to uppercase

A quoted constant is also a value that is given directly within the command. In this
case, however, the value is enclosed between single quotation marks. The value is
always taken to represent a character value. The value will be taken as everything
that is enclosed between the quotation marks, including any leading and trailing
blanks. The quotation marks are not considered part of the value and are removed
before the command receives the value. In addition, no folding will be done on the
value.

A REXX variable can be used in place of either a constant or a quoted constant.
The value to be used is first assigned to the variable. If the value is to be a quoted
constant then the enclosing single quotation marks must be part of the value that is
assigned. The REXX variable is then used within an expression. When REXX
evaluates the expression, the value of the REXX variable is placed into the
resulting command at the specified point. A REXX variable used in this way can
thus be used to pass a value to the command.

A pseudo-CL variable is a REXX variable whose name is specially identified within
an expression that is to be evaluated to a command. In this case, the REXX
variable is effectively passed to the command and not just the value it may contain.
Pseudo-CL variables are used for those command parameters that can return a
value. That is, the pseudo-CL variable can provide an input value to the command
parameter and can receive a value from the command for the same parameter.
This is different than a usual REXX variable which can be used only to provide
input to a parameter.

 Chapter 7. Understanding Commands and Command Environments 87

To use a pseudo-CL variable, the input value for the parameter is assigned to the
variable. The input value can be a numeric value or a character value. However, if
it is a character value, it will be always processed as a quoted constant. There is
no need to include enclosing quotation marks for a value in this case. This is in
contrast to a usual REXX variable. If enclosing single quotations marks are
included, they will be considered as part of the value and will be received by the
command. More information on pseudo-CL variables is provided in the following
section.

The input value for any command parameter is checked to ensure that it is of the
correct data type and length for that parameter. For example, a parameter that is
of type decimal can only receive a value that is a REXX number in standard
notation. A parameter that is of type character can only receive a character value.
This check is done regardless of whether the command actually uses that value
input or not. This fact is important in the use of pseudo-CL variables which would
be used for parameters that only return a value. In these cases, the pseudo-CL
variable must nonetheless be initialized with an input value. The input value must
be compatible with the definition of the parameter.

Any value that is returned from a command will be in the correct form when it is
placed into the pseudo-CL variable. If, for example, the command returns a
numeric value, the value will be converted to a REXX number and that number will
be stored in the variable that is identified. Normally, the complete value that is
returned will be placed into the pseudo-CL variable. However, there is one special
case where this may not be true. If the CL command parameter returns a varying
length value, that is, the parameter was created with type *CHAR, and the
*RTNVAL and *VARY attributes, the length of the pseudo-CL variable becomes
significant. The value returned from the command will be no longer than the value
in the pseudo-CL variable at the time the command is run. This case can only
occur with character data. To protect against having the returned value truncated,
the pseudo-CL variable should be initialized with a value of adequate length. CL
commands which retrieve or receive information, such as the Receive Message
(RCVMSG) command, are examples of the types of commands where data might be
truncated. For more information, see the CL Reference.

Understanding Pseudo-CL Variables: A pseudo-CL variable is a REXX variable
that is specified with a special syntax within a CL command. When a REXX
variable is specified with this syntax, the variable will provide the same function as
a CL variable does in a CL program. The variable will be able to provide an input
value to a command parameter and will be able to receive a return value from the
command for that parameter.

To use a pseudo-CL variable within a command, in place of the value for the
corresponding parameter, the name of the variable is used. The variable name
must be specified using the following rules:

� The variable name must conform to the rules of both REXX and CL. The
characters #, @, !, $, and REXX extension characters cannot appear in the
name.

� The variable name must be 10 characters or less in length.

� The variable name must be preceded by an ampersand (&).

The use of the ampersand is critical because it causes the variable to be used
rather than only the name of the variable. For example, the following two

88 REXX/400 Programmer’s Guide V4R1

commands, both specified as literals and both having a reference to the same
REXX variable name, are not the same and will produce different results.

"RTVDTAARA DTAARA(MYDATA) RTNVAR(RXVAR1)"

"RTVDTAARA DTAARA(MYDATA) RTNVAR(&RXVAR1)"

In the first literal, RXVAR1 will be taken as a character value. In this case, the
command will not run correctly. In the second string, the ampersand identifies
RXVAR1 as being the name of a REXX variable. In this case, the variable RXVAR1 will
be available to receive the returned value, and the command will run properly.

Similar consideration must be given when the command is specified as a REXX
expression. The following two expressions are not the same:

'RTVDTAARA DTAARA('RXVAR2') RTNVAR('RXVAR1')'

'RTVDTAARA DTAARA('RXVAR2') RTNVAR(&RXVAR1)'

Assume that the variables RXVAR1 and RXVAR2 have been assigned values as
follows:

RXVAR1='Data that should not be used'

RXVAR2='MYDATA'

Because the command is specified as an expression, REXX will evaluate the
expression, and the result will be the command that is passed to the command
environment. For the first expression, the result of the evaluation will be as follows:

"RTVDTAARA DTAARA(MYDATA) RTNVAR(Data that should not be used)"

REXX substituted the values for RXVAR1 and RXVAR2 wherever the variable names
appeared in the expression. Again, this command will fail because a REXX
variable is not in the evaluated command for the RTNVAR parameter.

For the second expression, the evaluated result will be:

"RTVDTAARA DTAARA(MYDATA) RTNVAR(&RXVAR1)"

Notice that for RXVAR2, REXX has substituted the value for the variable name. For
RXVAR1, the substitution is not made. Instead, the variable name remains in the
command. The contents of the data area MYDATA will be returned into RXVAR1.
Note also in this example, the RTVDTAARA command is one that returns a varying
length character string. The RTVDTAARA command is an example of a command that
returns a varying length value without truncation, that is, the length of the
pseudo-CL variable is not significant.

Example 1: This example uses pseudo-CL variables to work with CL commands.
It also has a condition trap, identified as error_handler routine.

/\ This program shows different ways to achieve the identical result. \/

/\ It adds libraries to the library list using the ADDLIBLE command. \/

/\ In some cases, pseudo-CL variables are used, in others REXX \/

/\ variables are concatenated with literal tokens. \/

PARSE ARG lib1 lib2 lib3 lib4 rest

CALL ON ERROR NAME error_handler /\ Set up ERROR condition trap.\/

 Chapter 7. Understanding Commands and Command Environments 89

'ADDLIBLE' lib1 /\ Add a library to \LIBL, \/

/\ concatenate a literal, and a variable. \/

'ADDLIBLE &lib2' /\ Add a library to \LIBL, \/

/\ using a pseudo-CL variable. \/

'ADDLIBLE LIB(&lib3)' /\ Add a library to \LIBL, in keyword \/

/\ format using a pseudo-CL variable. \/

'ADDLIBLE LIB('lib4')' /\ Add a library to \LIBL, in keyword \/

/\ format, concatenate a literal, and \/

/\ a variable. \/

EXIT

/\ error_handler routine \/

error_handler:

 IF RC ¬= CPF21ð3 /\ Library is not already in the library, \/

/\ then continue. \/

 THEN DO

SAY 'ERROR:'rc 'detected on line number:'sigl'. The command is:'

 SAY SOURCELINE(sigl)

 END

 RETURN

The following example shows a small program which issues CL commands, and
checks the return code on some and uses pseudo-CL variables on others.

90 REXX/400 Programmer’s Guide V4R1

/\\\/

/\ REXX procedure to determine if a given library is in the \LIBL. \/

/\ \/

/\ Parameters : Library name \/

/\ \/

/\ Returns: '1' if the library is found in the system portion\/

/\ of the \LIBL. \/

/\ '2' if the library is found in the user portion \/

/\ of the \LIBL. \/

/\ '3' if the library is not in the \LIBL. \/

/\ '4' if the library does not exist. \/

/\ \/

/\\\/

PARSE UPPER ARG lib

 /\ Check to see if the library exists. \/

 /\ Pseudo-CL variable is not required for OBJ parameter since \/

 /\ it is not a RTNVAL(\YES) parameter. \/

 'CHKOBJ OBJ(QSYS/'lib') OBJTYPE(\LIB)'

/\ Check for object not found exception. \/

 IF POS('CPF98',rc) ¬= ð THEN DO

"SNDPGMMSG MSG('Library: "lib "not found')"

 EXIT(4)

 END

/\ Retrieve the user and system library lists into REXX. \/

/\ Pseudo CL variables &urslibl and &syslibl used since both\/

/\ USRLIBL and SYSLIBL are RTNVAL(\YES) parameters. \/

'RTVJOBA USRLIBL(&usrlibl) SYSLIBL(&syslibl)'

/\ Is lib in the syslibl? \/

IF POS(lib,syslibl) ¬= ð THEN

 EXIT('1') /\ Exit: found in \SYSLIBL. \/

ELSE IF POS(lib,usrlibl) ¬= ð THEN

EXIT('2') /\ Exit: found in \USRLIBL. \/

 ELSE

EXIT('3') /\ Exit: library not in \LIBL. \/

Appendix F, “Sample REXX Programs for the AS/400 System” on page 157
contains two REXX programs which contain more examples of using CL commands
and pseudo-CL variables. These programs also use return codes and condition
traps to check on the success or failure or their commands. The first program
moves an object from a test library to a production library. The second one
displays the contents of a library.

Understanding CL Commands that are Sensitive to Program
Boundaries
A number of CL commands are sensitive in some manner to program and
activation group boundaries. Examples of such commands are commands related
to messages and the various override file commands. The Send Program Message
command (SNDPGMMSG), for example, includes a parameter that specifies which

 Chapter 7. Understanding Commands and Command Environments 91

program is to receive the message, the program that is sending the message, or
the program that called that program. The override file commands can scope to
the program call level, activation group, or job. For a complete list of CL
commands and APIs that are sensitive to boundaries, refer to the ILE/C Concepts
book, SC41-4606.

Commands that are sensitive to program boundaries need special consideration
when used in a REXX program. These considerations are required because of the
way in which REXX programs are run. A REXX program is not a program object.
Running a REXX program requires that the REXX interpreter be called, which then
runs the REXX program interpretively. Therefore, the REXX interpreter is the
program which determines how these CL commands will run.

The REXX interpreter does not call itself. To start another instance of the REXX
interpreter you must use a CL command. Calling a REXX program by using the
REXX CALL instruction will not cause a new instance of the REXX interpreter.
Instead, the same instance of the interpreter will stop running the current REXX
program and will then start running the new program. This is in contrast to the
case where the STRREXPRC command is used within the current REXX program to
start a new REXX program. In this case, a new instance of the interpreter will be
started, and the new program will be run by that new instance.

All REXX programs that are called using the REXX CALL instruction or are used as
a function within a REXX expression run under the same instance of the REXX
interpreter. The REXX programs share the same message queue. Moreover, any
override file command that is run from within any of these REXX programs will
remain in effect until the REXX interpreter itself completes.

The importance of how the program is run is highlighted in the following example:

Assume that REXX program A calls REXX program B by using the REXX CALL
instruction. Program B now wants to send its caller a program message by using
the Send Program Message (SNDPGMMSG) command. In a CL program, the
TOPGM parameter would be specified as *PRV *. This ensures that the message
was sent to the caller of the CL program. In REXX, the message will be sent to the
caller of the REXX interpreter and not REXX program A. To ensure that message
is available to A, the TOPGM parameter must be specified as *SAME *.

Understanding the Call Program (CALL) Command
Within a REXX program, the CALL command can be used to call programs that are
written in programming languages other than REXX. In addition to calling the
identified program, this command permits parameters to be passed to the called
program and lets the called program return values to the caller. The following rules
apply to the parameter values that are passed:

� If the parameter value is a number in REXX notation and the program being
called is not written in C/400, the REXX number is converted to a packed
decimal (15,5) number. The called program will receive the packed number
and not the original REXX number. Note that if the fractional part of the
number contains more than five places after the decimal point, the fractional
part will be truncated. If the integer part of the number contains more than 10
significant digits, an error will occur and the CALL will not run.

Any numeric value for a parameter can be specified in one of three ways:

1. By placing the numeric value directly in the command as a constant

92 REXX/400 Programmer’s Guide V4R1

2. By assigning the numeric value to a REXX variable and then using the
variable within an expression which causes REXX to build the final
command string using the REXX variable

3. By placing the numeric value within a pseudo-CL variable and then
effectively passing that variable to the called program

� If the parameter value is a number in REXX notation and the program being
called is written in ILE/C, the complete numeric value is passed directly, in
REXX notation. A null character will be placed immediately after the last digit
of the numeric value.

� If the parameter being passed is a number in REXX exponential notation and
the program being called is not an ILE/C program, the value will be converted
to a double precision floating point value. The program being called will
receive this floating point value.

� If the parameter being passed is a number in REXX exponential notation and
the program being called is an ILE/C program, the complete numeric value will
be passed directly in REXX exponential notation. A null character will be
placed immediately after the last digit of the value.

� If the parameter value being passed is a character value and that value is
specified as a constant, the following will occur:

– Any leading and trailing blanks in the value will be removed.

– The value will then be folded to uppercase using the CL rules for folding. If
the value cannot be folded, an error will occur and the CALL will not run.

– If the program being called is not an ILE/C program and the length of the
value is less than 32 characters, the value will be padded on the right with
blanks. The 32-character value will then be passed to the program.

– If the program being called is not an ILE/C program and the length of the
value is equal to or greater than 32 characters, the value will be passed as
is. No padding will be done. The length of the value that the called
program will receive will be equal to the length that the calling program
passed.

– If the program was written in ILE/C the length of the value is not significant
in determining how a character value is passed. In this case, a null
character will be placed immediately after the last character of the value.
This is then passed.

Note that a character constant value is a value that is not a REXX number and
is not enclosed in single quotation marks. A character constant value can be
specified by putting the value within the command string or by first assigning
the value to a REXX variable and then using the variable to cause REXX to
build the final command. A constant can never be specified by using a
pseudo-CL variable.

� If the parameter value is a character value and that value is specified either as
a quoted constant or through the use of a pseudo-CL variable, the following will
occur:

– The value of the parameter will be all characters between the enclosing
single quotation marks or the complete value of the pseudo-CL variable.
No folding will be done in this case. Enclosing quotation marks are not
considered part of the value and are removed before the value is passed.
However, as discussed in the following section, there are considerations for

 Chapter 7. Understanding Commands and Command Environments 93

using single quotation marks within a value that is assigned to a pseudo-CL
variable.

– The quoted constant is processed in the same manner as described for a
constant value.

Any constant value that is between single quotation marks is always considered
a character value and never a numeric value. A quoted constant can be
specified in one of two ways:

1. The value, including the enclosing single quotation marks, can be entered
directly within the command.

2. The value, including the enclosing single quotation marks, can be assigned
first to a REXX variable. The REXX variable can then be used within an
expression which will cause REXX to build the final command using the
REXX variable.

In addition, a pseudo-CL variable can be used. If the value within a pseudo-CL
variable is not a REXX number, then it is assumed to be a character value. A
character value within a pseudo-CL variable is treated as though it is enclosed
in single quotation marks. There is no need to actually have the quotation
marks as part of the value. If quotation marks are present, however, they will
be considered as part of the value rather than as special delimiters. It is
important to note the difference between usual REXX variables and pseudo-CL
variables in this area.

� There is no enforcement to ensure that the program being called has declared
the parameters properly. Only program convention between the calling and the
called programs ensures the parameter values are handled properly. Note that
the program being called need not receive the entire value being passed. For
example, the program that is called may only use the first 10 characters of a 20
character value. This does not cause a problem as long as the first 10
characters are sufficient for the program to do its work.

� When a pseudo-CL variable passes a parameter value, the program that is
called can effectively change the value of that variable. The change is
reflected back into the calling program. This is the method that can be used to
return a value to the calling program. However, the following precautions
should be observed:

– The return value should be of the same data type as the received value.
For example, if a packed decimal (15,5) value is received, a packed
decimal (15,5) value should be returned. Similarly, a return value for a
parameter that was received as a double precision floating point number
should also be in double precision floating point format. Where necessary,
the return value will be automatically converted to a proper format for the
REXX program to use.

– For character parameters, the length of the returned value should not
exceed the length of the received value. There is no enforcement to
ensure that this does not happen. Should the return length be greater than
the received length, the additional characters could cause unexpected
results to occur when the calling program is returned to. To ensure that
this does not happen, both the calling program and the program being
called must observe the same conventions for passing parameter values.

For ILE/C programs, when determining the maximum length that can be
returned, only the length of the actual value received should be considered.

94 REXX/400 Programmer’s Guide V4R1

The null character at the end of a received value does not allow one
additional character to be returned.

– If the length of the returned value is less than the length of the received
value, residual data may be left over from the received value. Depending
on how the returned value is assigned, the returned value may simply
overlay the first part of the original received value, leaving the remainder of
the received value intact. The calling program could thus receive data that
is incorrect. To ensure that this does not happen, the parameter should be
cleared, if necessary, such as setting it to blanks, before the return value is
assigned.

An ILE/C program should not use a null character to mark the end of a
return value. REXX does not recognize the null character as a special
delimiter.

Pseudo-CL variables can be used to pass a value to the called program and
also lets the called program return a value. In contrast, a usual REXX variable
only lets a value be passed to the called program.

Understanding the Delete File and Remove Member Commands
Both the Delete File (DLTF) and Remove Member (RMVM) commands can be run
from within a REXX program. Caution must be used when the source member
which is to be deleted or removed is the one that contains the REXX program
which caused the command to run in the first place. Doing this is equivalent to a
program deleting itself.

If the source type of the member is not REXX, the member can be deleted or
removed without affecting the running of the REXX program. The delete or remove
will be done, and the REXX interpreter will continue to run the program. In this
case, the internal form of the program is not directly associated with the member.
Deleting or removing the member does not affect the internal form. If the source
type of the member is REXX, deleting or removing the source member will cause
the internal form of the REXX program to be deleted at the same time. As a result,
after the member has been deleted or removed, the REXX interpreter will be
unable to continue running the REXX program and will stop with an error condition.

When the source type is REXX, the source member will be suitably locked for the
duration of the run. Thus it will not be possible for one job to delete the source file
or remove the source member while the REXX program is being run in a second
job. The precaution mentioned above applies when the DLTF or RMVM command is
run from within the same job that the REXX program is running in. When the
source type is not REXX, the member will be locked only during the time that
REXX is reading the source and building the internal form. After the internal form
is built, the source will be unlocked so any other job can use the member.

Understanding the CPICOMM Command Environment
You can use the ADDRESS CPICOMM statement in your REXX program to call
program-to-program communications routines. These communications routines
must be part of Common Programming Interface (CPI) Communications, which is
defined in IBM's Systems Application Architecture.

CPI Communications routines are described in the SAA Common Programming
Interface Communications Reference.

 Chapter 7. Understanding Commands and Command Environments 95

Here is the format to use when calling a CPI Communications routine from a REXX
program:

55─ ──ADDRESS CPICOMM 'rtnname ──┬ ┬────────── ─return_code'──5%
 │ │┌ ┐────────
 └ ┘ ───

6
┴─parm─

rtnname
is the name of the CPI Communications routine to be called.

parm
is the name of one or more parameters to be passed to the CPI
Communications routine. The number and type of these parameters are
routine-dependent. A parameter being passed must be the name of a variable.

return_code
is the name of a parameter to receive the return_code from the CPI
Communications call. Do not confuse this return_code from CPI
Communications with the reserved REXX variable RC. The reserved REXX
variable RC is the return code from the CPICOMM command environment. CPI
Communications values for return_code are described in the SAA Common
Programming Interface Communications Reference.

The following is a typical example using the ADDRESS CPICOMM statement:

ADDRESS CPICOMM 'CMINIT CONV_ID SYM_DEST_NAME RETURN_CODE'

Note: If REXX successfully calls the CPI Communications routine, then the REXX
variable RC contains a zero return code. Any value in return_code is the return
code from the called CPI Communications routine; its value is greater than or equal
to zero.

If REXX detects an error, (for example, is not able to successfully call the CPI
Communications routine), then the REXX variable RC contains a negative return
code. A message is issued to the job log describing the nature of the error. Any
value in return_code is meaningless because the CPI Communications routine was
not successfully called.

Understanding the EXECSQL Environment
You can use the ADDRESS EXECSQL statement in your REXX program to issue
Structured Query Language (SQL) statements to access your DB2/400 databases.
Here is the format to use when issuing an SQL statement:

55──ADDRESS──EXECSQL──SQL_statement──5%

SQL statements are described in the DB2 for AS/400 SQL Reference. Following is
a typical example using the ADDRESS EXECSQL statement:

ADDRESS EXECSQL 'INSERT INTO DB/TABLE VALUES(789)'

The EXECSQL environment, including instructions for using REXX variables to set
and receive data, is described in the DB2 for AS/400 SQL Programming. This
book also contains instructions for creating a REXX program that can use the
EXECSQL environment when the DB/400 Query Management and SQL
Development Kit Version 3 LPP, 5763-ST1, is not installed.

96 REXX/400 Programmer’s Guide V4R1

Return Codes from EXECSQL: The REXX variable RC indicates either a
successful call to the SQL interface or a failure to call the SQL interface. If the call
completes successfully, the REXX RC variable is set to zero. If the call cannot be
completed, the REXX RC variable is set to a negative number and the failure
condition is raised. For more information on values returned in the REXX RC
variable for the EXECSQL environment, the SQL communications area (SQLCA),
and the SQL description area (SQLDA), refer to the DB2 for AS/400 SQL
Reference.

 Chapter 7. Understanding Commands and Command Environments 97

98 REXX/400 Programmer’s Guide V4R1

Chapter 8. Using REXX Functions and Subroutines

REXX programs often use functions and subroutines. REXX provides many
functions which may be called in any REXX program. These are known as built-in
functions. Subroutines and functions have a lot in common, and when discussed at
the same time, they are called routines.

The following topics are covered in this chapter:

� Understanding Functions and Subroutines
� Using Internal Routines
� Using External Routines

 � Accessing Parameters
 � Returning Results
� Understanding the Function Search Order
� Using REXX Built-in Functions
� Understanding Conversion Functions.

Understanding Functions and Subroutines
REXX lets you create and call your own internal and external functions and
subroutines. Internal routines are identified by labels within a REXX program, and
can only be called from inside that REXX program. External routines are in
separate source members and may be called by different REXX programs.
External routines may be written in REXX or in other languages which support the
REXX external function interface.

Both internal and external routines may call themselves. This is called recursive
invocation.

You can include function calls to internal, built-in, and external routines using the
following syntax:

55─ ──function_name(──┬ ┬───────────────────────────── ─)──5%
 └ ┘ ─expression─ ──┬ ┬─────────────
 └ ┘──,expression

Up to 20 parameters are allowed on a function call. The parameters may be of any
length, and some parameters may be omitted when the function being called allows
that. A distinction is made by REXX between a null value and an omitted
parameter. The called program can distinguish between the two. You can
distinguish between the two by using the EXISTS and OMITTED parameters on the
ARG function. For more information on the ARG function, see the REXX/400
Reference.

When a function call is run, the expressions are evaluated and passed to the
function, and the routine calculates a return value. That return value is used in the
calling REXX program where the function call appears.

 Copyright IBM Corp. 1997 99

Understanding the Differences Between Functions and Subroutines
In REXX, functions and subroutines are quite similar. There is one difference
between them in the way they are called and in the way the routines end.

� Functions are run when they are written as part of an expression, such as
function-name (expression) and subroutines are run when they are named on
the REXX CALL instruction. The CALL instruction syntax is as follows:

55──CALL──routine_name─ ──┬ ┬───────────────────────────── ─5%
 └ ┘ ─expression─ ──┬ ┬─────────────
 └ ┘──,expression

Note that the parameters on CALL are not enclosed in parentheses. As with
function calls, up to twenty parameters are allowed on a CALL instruction, and
parameters may be omitted.

� Functions must return a value when they end, but subroutines may end without
returning a value. When a routine is run as a subroutine, and it returns a
value, that value is assigned to the REXX special variable RESULT. If it does
not return a value, RESULT is dropped, and is returned to its default value.

All REXX built-in routines return a value, so they are true functions.

Any routine that returns a value may be called either as a function or as a
subroutine. All routines may be called as subroutines. This is true for built-in
functions, as well as internal and external routines. Here is an example of calling
some REXX built-in functions both ways:

/\ Calling built-in functions as functions and subroutines. \/

today = DATE() /\ Call date as a function. \/

SAY "Today's date is" today

CALL Date /\ Call date as a subroutine. \/

SAY "Today's date is" RESULT /\ Now the data is in 'result'. \/

SAY "The current time is" TIME() /\ Call time as a function. \/

CALL Time /\ Call time as a subroutine. \/

SAY "The current time is" result /\ Now the time is in 'result'. \/

Using Internal Routines
Internal routines are identified by labels within the same source member as the
main program which calls them. They end when they run a RETURN instruction. If
a value is specified on the RETURN instruction, that value is returned by the
routine. If no value is given on the RETURN instruction, then no value is returned.
If an EXIT instruction is run within an internal routine, the program will stop
immediately, exactly as it would if the EXIT was run in the main program.

The variables in the main program are available in internal routines. If you want to
create a new generation of variables in an internal routine, you can use the
PROCEDURE instruction, which is described in “Using the PROCEDURE
Instruction” on page 27.

Here is an example of an internal subroutine which uses the main program's
variables as its input, and sets a variable in the main program as its output.

100 REXX/400 Programmer’s Guide V4R1

/\ A simple example of using the CALL instruction. \/

SAY "This is the main program"

DO num = 1 to 5

CALL square /\ This calls the subroutine. \/

SAY "Back in the main program."

SAY num "squared is" num2 /\ This displays the result. \/

END

EXIT /\ This ends the program. \/

square: /\ The subroutine begins here. \/

SAY "This is the subroutine."

num2 = num \ num /\ This calculates the square. \/

RETURN /\ This resumes the main program. \/

Using External Routines
External routines are functions or subroutines which are not part of the source
member of the calling program. External routines can be written in REXX or other
languages.

Understanding External Routines Written in REXX
To create an external function written in REXX, you create a source member with
the name you want to give the routine. You must put this member in the first
QREXSRC file in your library list or put it in the same source file as the REXX
programs that will be calling it.

External routines do not start with labels and cannot start with the PROCEDURE
instruction. They cannot access the variables of the REXX program which called
them. They can end with either the RETURN or EXIT instructions.

External routines may have internal routines within them. In that case, a RETURN
instruction in the internal routine returns to the point in the external routine that did
the calling, not to the program which called the external routine. These internal
routines may use the PROCEDURE instruction.

Understanding External Routines Written in Other Languages
To create an external function written in another language, you must create a
program which is written to accept parameters according to the way the REXX
external function interface passes them. See the REXX/400 Reference for that
definition. Give the program the name that you want REXX to know it by, and put it
in a library which is in your library list. If the external routine is written in an ILE
language, C/400, or Pascal, then it must be a main program.

External routines in other languages can access the variables of the REXX program
which called them by using the variable pool interface service QREXVAR. External
functions use QREXVAR to set their return value. For more information on
QREXVAR, see Appendix G, “Communication Between REXX/400 and ILE/C” on
page 175 and the REXX/400 Reference.

 Chapter 8. Using REXX Functions and Subroutines 101

 Accessing Parameters
The rules for accessing the parameters passed to routines are the same for
functions and subroutines, and are the same for internal routines and external
routines written in REXX. Formal parameters are accessed with the ARG, PARSE
ARG, and PARSE UPPER ARG instructions and the ARG built-in function.

In REXX, parameters may contain many different words and character strings. The
following examples pass only a single parameter to ROUTINE1 even though many
pieces of information are used.

CALL routine1 "first second third" /\ This parameter contains \/

/\ three words. \/

CALL routine1 "first, second, third" /\ This parameter contains \/

/\ three words, with commas. \/

CALL routine1 first second third /\ This an expression made \/

/\ from values of three \/

 /\ variables. \/

CALL routine1 "Hello" 5+1 substr("testing",1,max(4,length("testing")))

/\ This is an expression made \/

/\ from a combination of \/

/\ operations and function \/

 /\ calls. \/

When you want to pass several pieces of information as separate parameters,
separate them with commas:

CALL routine1 "Hello","Greetings", "Salutations"

When using ARG and PARSE ARG, you specify the arguments you want by the
way you write the parsing template. For example, if you wanted to get the first,
third, and fourth arguments passed to a routine, you could use the following
instruction:

ARG first,,third,fourth

You can omit some of the arguments on a call to a routine, as in the following
example:

CALL routine1 first,,,fourth, fifth

In this case, an ARG instruction in ROUTINE1 which attempted to access the
second or third arguments would get null results for those arguments.

The ARG built-in function also accesses the arguments passed to a routine. If you
pass it a number, as in ARG(2), then it will return the argument passed in that
position, or a null string if that argument was omitted. If you call ARG with no
parameters, it will return the number of arguments passed to the routine.

You can call the ARG and PARSE ARG instructions, and the ARG built-in function,
as many times as you need.

102 REXX/400 Programmer’s Guide V4R1

 Returning Results
Internal routines end with the RETURN instruction. Processing continues with the
instruction following the function or subroutine call. The full form of the instruction
is:

55──RETURN─ ──┬ ┬──────────── ─5%
 └ ┘─expression─

where, if expression is specified, it will be used as the return value for the routine.
The value of expression may be a number, or a character string of any length. If
you want a routine to return several pieces of information, you can create a return
string consisting of several words. The calling program may then break up the
string just like any other string, using instructions like PARSE and functions like
SUBSTR.

External routines end with either the RETURN instruction or the EXIT instruction.
Both of these instructions may specify an expression to return as the function
value. When EXIT ends an external routine, the expression value may be a string.
When EXIT ends the main program, the expression value may only be a number.

Understanding the Function Search Order
When REXX encounters a function call or subroutine call, it searches for the routine
in the following order:

1. An internal routine (a label within the same program)

2. A built-in function

3. External routines in the following order:

a. A member in the same source file as the calling routine

b. A member in the file QREXSRC in your current library

c. A member in the first QREXSRC file in your library list.

You can alter this search order by placing the routine name in quotation marks.
REXX then will not capitalize the function name and will bypass the search for
internal routines. By selective use of quotation marks on routine names, you can
override the name of a built-in or external function by creating an internal routine
with the same name, and still be able to call the built-in or external routine when
you want to.

/\ When you call a REXX function, REXX normally searches for an \/

/\ internal function before searching for a built-in or external \/

/\ function. However, if you put the name of the function in \/

/\ quotation marks, REXX will bypass the search for an internal \/

/\ function. This lets you 'override' built-in REXX functions \/

/\ in your program. \/

/\ This program overrides the DATE built-in function to provide a \/

/\ Date function which has a different default and also an extra \/

/\ option. \/

SIGNAL main /\ Branch past the internal function. \/

 Chapter 8. Using REXX Functions and Subroutines 103

/\ This is the routine that changes the behavior of the DATE \/

/\ function. The default is 'E' format, and 'Y' format is defined \/

/\ to be yyyyddd. \/

Date: PROCEDURE

ARG format

SELECT

WHEN format = '' THEN answer = 'DATE'('E')

WHEN format = 'Y' THEN DO

PARSE VALUE 'DATE'('S') WITH answer +4 .

answer = answer||'DATE'('D')

 END

OTHERWISE answer = 'DATE'(format)

END

RETURN answer

main: /\ The main program starts here. \/

SAY DATE() /\ Shows the date in 'E' format: dd/mm/yy. \/

/\ This function call goes to the internal function.\/

SAY 'DATE'() /\ Shows the date in REXX default format: dd mon yy.\/

/\ This function call goes to the built-in function.\/

SAY DATE('Y') /\ Shows the date in the new 'Y' format. \/

/\ This function call goes to the internal function.\/

SAY 'DATE'('Y') /\ Causes an error because the REXX date function \/

/\ does not have a 'Y' option. \/

/\ This function call goes to the built-in function.\/

EXIT

Using REXX Built-in Functions
The built-in functions allow you to perform many different types of operations. In
this book, many of these functions are discussed, including:

� String functions (see “Using String Functions” on page 72)

� Conversions functions (see “Understanding Conversion Functions” on
page 111)

� Numeric functions, such as MAX, MIN, ABS, and RANDOM

� Double-byte character set functions (see Appendix C, “Double-Byte Character
Set Support” on page 141)

� Informational functions such as ADDRESS, DATATYPE, DATE, ERRORTEXT,
SOURCELINE, TIME, TRACE, and VALUE.

For a complete description of the built-in functions, see the REXX/400 Reference.
For a complete list of the built-in functions, see Appendix B, “REXX Built-in
Functions” on page 139.

104 REXX/400 Programmer’s Guide V4R1

Using the ADDRESS Built-in Function
The ADDRESS function returns the name of the current command environment, as
shown in the following example:

SAY ADDRESS() /\ Shows the default command environment "COMMAND".\/

ADDRESS 'MYLIB/APP1'

SAY ADDRESS() /\ Shows the new environment "MYLIB/APP1". \/

Command environments are discussed in Chapter 7, “Understanding Commands
and Command Environments” on page 79. The ADDRESS instruction can be used
to set the command environment within a REXX program. The string used with the
ADDRESS instruction is returned by the ADDRESS function. This means that if the
command environment is set using ADDRESS '\LIBL/MYPROG', the ADDRESS
function will return \LIBL/MYPROG.

Using the DATE Built-in Function
The DATE function returns the current system date, which may be different from
your job date. There are several options for the format of the date returned.

SAY DATE() /\ Shows the default: dd mon yyy; for example, \/

/\ 27 August 1988. 'mon' is always the first three \/

/\ letters of the English name of the month. \/

SAY DATE('E') /\ Shows the date in "European" format: dd/mm/yy; \/

/\ for example, 27/ð8/88. \/

SAY DATE('U') /\ Shows the date in "USA" format: mm/dd/yy; \/

/\ for example, ð8/27/88. \/

SAY DATE('S') /\ Shows the date in "Standard" format: yyyymmdd; \/

/\ for example, 1988ð827. \/

If you need to know your job date instead of the current system date, use the
Retrieve Job Attributes (RTVJOBA) command.

Using the ERRORTEXT Built-in Function
The ERRORTEXT function returns the text of the message associated with a REXX
error number. This function is commonly used in error-handling routines, where
REXX provides the error number to the routine.

Here are a few examples of the ERRORTEXT function:

SAY ERRORTEXT(4ð) /\ Shows the text of REXX Error 4ð \/

/\ "Incorrect call to routine". \/

SAY ERRORTEXT(16) /\ Shows the text of REXX Error 16 \/

/\ "Label not found". \/

SAY ERRORTEXT(35) /\ Shows the text of REXX Error 35 \/

/\ "Invalid expression". \/

Using the FORMAT Built-in Function
The FORMAT function adjusts, rounds, and formats a number to fit in a certain
amount of space. FORMAT is an example of a string function. You can specify
several arguments to the FORMAT function. These arguments are detailed in the
REXX/400 Reference and described here.

 Chapter 8. Using REXX Functions and Subroutines 105

SAY FORMAT(3.14159) /\ This displays "3.14159", which \/

/\ is the number 3.14159 rounded \/

/\ and formatted to REXX defaults. \/

SAY FORMAT(3.14159,,2) /\ This displays "3.14", which is \/

/\ the number 3.14159 rounded and \/

/\ formatted to show 2 places to the\/

/\ right of the decimal point. \/

SAY FORMAT(3.14159,2,2) /\ This displays " 3.14", which is \/

/\ the number 3.14159 rounded and \/

/\ formatted to show 2 places to the\/

/\ right and 2 places to the left \/

/\ of the decimal point. \/

SAY FORMAT(12345.73,,3,,ð) /\ This displays "1.235E+4", which \/

/\ is the number 12345.73 in \/

/\ exponential notation with 3 \/

/\ places to the right of the \/

/\ decimal point. \/

Using the MAX and MIN Built-in Functions
The MAX function returns the largest number from a specified list of numbers, up to
20. The MIN function returns the smallest number from a specified list of numbers,
up to 20.

The following are some examples:

big = MAX(1,2,3,4,5,6,7,8,9,1ð,11,12,13,14,15,16,17,18,19,2ð)

/\ MAX returns '2ð', big is assigned 2ð. \/

small = MIN(1,2,3,4,5,6,7,8,9,1ð,11,12,13,14,15,16,17,18,19,2ð)

/\ MIN returns '1', small is assigned 1. \/

If your list is longer than 20 expressions, you can nest calls to MAX or MIN as
shown in the following examples:

bigger = MAX(1,2,3,4,5,6,7,8,9,1ð,11,12,13,14,15,16,17,,

 MAX(18,19,2ð,21,22,23,24,25,26,27,28,29,3ð))

/\ MAX returns '3ð', bigger is assigned '3ð'. \/

smaller = MIN(1,2,3,4,5,6,7,8,9,1ð,11,12,13,14,15,16,17,18,19,,

 MIN(2ð,21,22,23,24,25,26,27,28,29,3ð))

/\ MIN returns '1', smaller is assigned '1'. \/

Using the SETMSGRC Built-in Function
The SETMSGRC function lets you control what REXX does with status and notify
messages sent to the program message queue. The SETMSGRC function can
specify certain messages or a range of messages that, if received, will be returned
to the program in the special variable RC.

Example 1: This example is a program that calls ABCPROG while monitoring for
one particular message. Program ABCPROG issues a status message when it
finds that a data file it uses must be expanded. The program also issues other
messages for serious errors.

106 REXX/400 Programmer’s Guide V4R1

SIGNAL ON ERROR

SAY 'Do you want the data file to be automatically expanded? (Y or N)'

PULL answer .

IF left(answer,1) ¬= 'Y' THEN

CALL SETMSGRC 'SET','CPZ66ð4'

'CALL ABCPROG'

SAY 'ABCPROG ran successfully.'

RETURN

Error:

IF RC = 'CPZ66ð4' THEN DO

SAY 'Data file needs to be expanded. Please expand the file'

SAY ' and then try this program again.'

END

ELSE

SAY 'ABCPROG had a serious error. Message number is' RC

RETURN

Example 2: This program issues a command called ABCPROG while monitoring
for a range of messages.

SIGNAL ON ERROR

SAY 'Do you want minor errors to stop ABCPROG? (Y or N)'

PULL answer .

IF left(answer,1) = 'Y' THEN

CALL SETMSGRC 'SET','CPZ66ð1:CPZ66ð9'

'CALL ABCPROG'

SAY 'ABCPROG ran successfully.'

RETURN

Error:

IF RC >= 'CPZ66ð1' & RC <= 'CPZ66ð9' THEN DO

SAY 'A minor error occurred while ABCPROG was running. The'

SAY ' program was stopped.'

END

ELSE

SAY 'ABCPROG had a serious error. Message number is' RC

RETURN

 Chapter 8. Using REXX Functions and Subroutines 107

Example 3: This example uses the PUSH option to preserve any previous
settings.

SIGNAL ON ERROR

SAY 'Do you want minor errors to stop ABCPROG? (Y or N)'

PULL answer .

IF left(answer,1) = 'Y' THEN

CALL SETMSGRC 'PUSH','CPZ66ð1:CPZ66ð9'

ELSE

CALL SETMSGRC 'PUSH' /\ Don't trap ANY status messages \/

'CALL ABCPROG'

SAY 'ABCPROG ran successfully.'

CALL SETMSGRC 'RESTORE' /\ Restore old message ID list \/

RETURN

Error:

IF RC >= 'CPZ66ð1' & RC <= 'CPZ66ð9' THEN DO

SAY 'A minor error occurred while ABCPROG was running. The'

SAY ' program was stopped.'

END

ELSE

SAY 'ABCPROG had a serious error. Message number is' RC

CALL SETMSGRC 'RESTORE' /\ Restore old message ID list \/

RETURN

Example 4: In this example the QUERY function returns the current messages
handled. The message list is searched for a specific message being monitored.

SIGNAL ON ERROR

cur_msgids = SETMSGRC('QUERY')

/\ To add CPZ66ð4 to the list of status messages monitored, \/

/\ concatenate cur_msgids and 'CPZ66ð4' and set the new list \/

/\ by PUSHing it, saving the old list in the process. \/

IF cur_msgids ¬= '' THEN /\ If the current list is not \/

cur_msgids = cur_msgids ',' /\ empty, add a comma to it \/

CALL SETMSGRC 'PUSH', cur_msgids 'CPZ66ð4'

'CALL ABCPROG'

SAY 'ABCPROG ran successfully.'

CALL SETMSGRC 'RESTORE'

RETURN

Error:

IF RC = 'CPZ66ð4' THEN DO

SAY 'Data file needs to be expanded. Please expand the file'

SAY ' and then try this program again.'

END

ELSE

SAY 'ABCPROG had a serious error. Message number is' RC

RETURN

SETMSGRC settings are not saved and restored over function calls. Internal and
external REXX functions and subroutines inherit the SETMSGRC settings of their
caller, and any changes they make remain in effect when they return to their caller.

108 REXX/400 Programmer’s Guide V4R1

For more information on the SETMSGRC function, see the REXX/400 Reference.

Using the SOURCELINE Built-in Function
The SOURCELINE function returns the nth line in the currently running REXX
program, if you specify n. If you omit n, then the number of lines in the REXX
program is returned, as shown in the following example:

SOURCELINE(1) might return '/\ This is a 1ð-line program \/'

SOURCELINE() returns 1ð /\ when the program has 1ð lines \/

The following example uses SOURCELINE function in a program.

/\ This program asks you to enter an expression. It then evaluates \/

/\ the expression and tells you the result. If the expression \/

/\ has an error in it, the program will tell you what that error is. \/

/\ This program does one other thing. If you call it with \/

/\ a parameter of 'help', it will write out the first three lines of \/

/\ the program, to explain what the program does. \/

/\ It uses the REXX built-in function SOURCELINE to do this. \/

ARG parm

IF parm = 'HELP' THEN DO i = 1

helpline = SOURCELINE(i)

 SAY helpline

IF helpline = '' THEN LEAVE /\ Quit on the first blank line. \/

 END

SAY 'Enter an expression'

PULL expr

Signal on Syntax

INTERPRET 'answer =' expr

SAY 'That expression evaluates to' answer

EXIT

Syntax:

SAY 'Your expression had an error in it.'

SAY 'The error was' ERRORTEXT(RC)

EXIT

Using the TIME Built-in Function
The TIME function returns the time in the 24-hour clock format. However, there are
several options that allow you to obtain alternative formats. The following are
examples:

SAY TIME() /\ Shows time in the default format: \/

 /\ hh:mm:ss \/

SAY TIME(H) /\ Shows time in "Hours" format: hh \/

SAY TIME(M) /\ Shows time in "Minutes" format: mm \/

SAY TIME(S) /\ Shows time in "Seconds" format: ss \/

For more information on other options, refer to the REXX/400 Reference.

 Chapter 8. Using REXX Functions and Subroutines 109

The TIME function can also perform elapsed-time calculations. The following
example measures the amount of time it took to run the Send Network File
(SNDNETF) command:

Call TIME 'R'

'SNDNETF FILE(MYLIB/BIGFILE) TOUSRID(THEBOSS)'

elapsed = TIME('E')

SAY 'The SNDNETF command took' elapsed 'seconds.'

Using the TRANSLATE Built-in Function
The TRANSLATE function translates characters within a string or to reorder the
characters in a string. In the following example, the TRANSLATE function changes
punctuation.

/\ Using the TRANSLATE function to change \/

/\ unwanted characters to blanks. \/

TEXT= "Listen, my children, and you shall hear",

"Of the midnight ride of Paul Revere"

SAY WORDPOS("my children", TEXT) /\ Displays 'ð', because the \/

/\ word in TEXT is \/

 /\ 'children'. \/

/\ \/

/\ Say whether 'my children,' can be found in' TEXT. \/

/\ \/

nopunct= TRANSLATE(TEXT," ",".;:!,?")

/\ Remove punctuation. \/

SAY SIGN(WORDPOS('my children', nopunct)) /\ Displays '1'. \/

SAY SIGN(WORDPOS('kids', nopunct)) /\ Displays 'ð'. \/

To help make up strings to put in a translation table, you can use the XRANGE
built-in function. For more about this function, see the REXX/400 Reference.

Using the VERIFY Built-in Function
You can use the verify function to find out whether a string contains only characters
of a particular set of characters.

VERIFY(string,reference)

returns the position of the first character in string that is not also in reference. If all
the characters in string are also in reference, zero is returned.

The following is an example:

/\ Test that all input characters are valid. \/

SAY “Please enter the serial number”

SAY “(eight digits, no embedded blanks or periods)”

PULL serial rest

IF VERIFY(serial, “ð123456789”)=ð,

& LENGTH(serial)= 8,

& rest = ""

THEN SAY “Accepted”

ELSE

110 REXX/400 Programmer’s Guide V4R1

SAY "Serial number not valid. Please enter another serial number."

Understanding Conversion Functions
At times you may need to write a program that works with the hexadecimal or
binary representations of some of its data. REXX provides several built-in functions
to help you do this. These are called conversion functions.

Understanding Data Formats
Data in REXX programs is normally entered, stored, and used in character form.
REXX also lets you enter literal strings in your program in hexadecimal or binary
form, and REXX will automatically convert them to character form when the
program runs.

To enter data in hexadecimal form, enclose the hexadecimal data within quotation
marks, and follow it with the letter X. This is a hexadecimal string. Here is an
example that shows how the letter A can be entered in hexadecimal instead of as a
character. The letter A is stored as the hexadecimal number C1.

lettera = 'C1'X

IF lettera = 'A' THEN SAY 'Yes, they are equal'

ELSE SAY 'You will never see this message.'

To enter data in binary form, enclose the data within quotation marks, and follow it
with the letter B. This is a binary string.

lettera = '11ðð ððð1'B

IF lettera = 'A' THEN SAY 'Yes, they are equal'

ELSE SAY 'You will never see this message.'

Using Conversion Functions
The conversion functions give you more ways to work with data in special formats
in addition to the literals above. The literals only allow you to enter data in your
program in those special forms. The conversion functions let you change the
format of data between any of the formats that REXX supports.

Here is an example. The C2X function takes one or more characters and returns a
character string that shows the hexadecimal representation of the input string.

SAY "The output of C2X('A') is" C2X('A') /\ Displays C1. \/

This function always produces an output string with twice as many characters as
the input string, because every character is represented by two hexadecimal digits.

The following table lists the data formats supported by REXX. The character
indicators listed are used in the names of the conversion functions to indicate the
type of data used by the function.

 Chapter 8. Using REXX Functions and Subroutines 111

Data
Format

Character
Indicator

Data
Description

Binary B Data consisting of the characters 0 and 1, not
including binary strings

Character C Data consisting of any characters

Decimal D Data consisting of the characters 0-9

Hexadecimal X Data consisting of the characters 0-9, a-f, and A-F,
not including hexadecimal strings

Names of the Conversion Functions
The conversion functions have three-character names. The first indicates the input
data type of the function, the second is always the digit 2, and the last indicates the
format of the output of the function.

These functions are fully defined in the REXX/400 Reference. Here are some
examples of using the functions. These examples all show use of the functions on
data which represents just one byte, but longer strings of characters may be used.

When any of these functions produce output showing a hexadecimal number, the
alphabetic characters are returned in uppercase. When these functions are given
input in hexadecimal form, it may be in uppercase or lowercase.

Function
Call

Output

Description

B2X('1100
0001')

C1 The input to this function is a character string consisting of
ones and zeros. The data cannot be entered as a binary
string. You can place blanks between groups of four
characters to make it easier to read.

B2X('1111
0000'B)

0 This binary string represents the character '0'. This binary
zero is padded with zeros to a length of four, and this
converts to a hexadecimal zero.

B2X('1100
0001'B)

Error This binary string represents the character 'A'. This is not
a binary character, so it causes an error.

C2D('A') 193 The decimal value of the character encoding for A is 193.
Note that the value 193 produced by this function is in
character form. You can perform REXX arithmetic in the
usual way on the output of this function.

C2X('A') C1 The hexadecimal value of the character encoding for A is
C1.

D2C(193) A This is the reverse of C2D.

D2X(193) C1 The decimal number 193 is the same value as the
hexadecimal number C1.

X2B('C1') 1100 0001 This converts character strings representing hexadecimal
values to character strings representing binary values. You
can place blanks between pairs of characters to make it
easier to read.

X2C('C1') A This is the reverse of C2X.

X2D('C1') 193 This is the reverse of D2X.

112 REXX/400 Programmer’s Guide V4R1

You may have noticed that not all possible conversion functions are provided. If
you want to perform a conversion not provided by one of these functions, you can
do that by combining the functions as shown in the following table.

To change n to Binary to Character to Decimal

From Binary X2C(B2X(n)) X2D(B2X(n))

From Character X2B(C2x(n))

From Decimal X2B(D2X(n))

 Chapter 8. Using REXX Functions and Subroutines 113

114 REXX/400 Programmer’s Guide V4R1

Chapter 9. Using the REXX External Data Queue

The REXX external data queue provides a way to temporarily hold data which
REXX, and any suitably tailored application programs, can use. The data on the
queue is accessible by and visible to users as lines or as buffers. A buffer is a
sub-grouping of lines within a queue, and lines are character strings of arbitrary
lengths. Each line can contain up to 32,767 characters. The individual characters
have no special meaning or effect to REXX. The external data queue can be used
to replace user input.

The data on the queue can be used by REXX programs and user-written programs
in an arbitrary manner. Thus, the REXX queue services can be used as a way of
exchanging data between programs, providing a device for inter-program
communication.

Learning About the REXX External Data Queue
A REXX external data queue comes into existence when a job is started and
persists until the job is ended. All programs that run under the same job have
access to that external data queue.

The following operations can be performed on the REXX external data queue:

� A line can be placed at the end of the current queue buffer.
� A line can be placed at the front of the current queue buffer.
� A line can be retrieved from the front of the queue.
� The number of lines on the queue can be queried.
� A new queue buffer can be created.
� A queue buffer can be removed.
� The entire queue can be cleared.

These operations are made available directly to a REXX program through REXX
instructions and CL commands. The same operations can be performed within
other programming languages through the queue services application program
interface (QREXQ). For more information on this interface, see the REXX/400
Reference. Some examples are provided in the Appendix F, “Sample REXX
Programs for the AS/400 System” on page 157.

Using the REXX Queue Services on the AS/400 System
REXX provides the following instructions and functions for working with the queue:

QUEUE This instruction places a given line at the end of the
current queue buffer.

PUSH This instruction places a given line at the front of the
queue.

PULL This instruction retrieves a line from the front of the queue
or reads from STDIN.

PARSE UPPER PULL This instruction retrieves a line from the front of the queue
or reads from STDIN.

QUEUED This built-in function determines the number of lines in the
queue.

 Copyright IBM Corp. 1997 115

These provide all the necessary tools for working with the queue. In addition, the
Add REXX Buffer (ADDREXBUF) and Remove REXX Buffer (RMVREXBUF)
commands are available to REXX programs for working with queue buffers. These
commands extend the flexibility of the REXX queue instructions.

Starting Queuing Services
When a job is started, the queuing services are immediately made available to the
job. These services remain available until the job ends. Similarly, entries placed
on the queue will remain on the queue and be available until explicitly removed or
until the job is ended. After starting a job, any program that is part of the job can
continue to use any of the queuing services until the job ends. Thus, one program
can place an entry on the queue and end. Another following program can then
receive what was placed in the queue at a later time. This can serve as a device
for inter-program communication.

Understanding Queue Management Instructions
This section discusses the instructions used to manage the REXX external data
queue.

Using the PUSH Instruction
The PUSH instruction expects a REXX string which is then placed at the front of
the queue. The PUSH instruction imitates pushing data onto a stack. That is, the
last data placed by PUSH is the data at the front of the queue. The following
example illustrates the use of the PUSH instruction.

/\ Using PUSH and PULL. \/

SAY 'To start with, the queue has' queued() 'elements.'

/\ QUEUED() returns ð elements \/

PUSH TIME() /\ Add the current time to the queue. \/

PUSH DATE() /\ Add the current date to the queue. \/

/\ This goes before what is already in the queue.\/

SAY 'Now the queue has' queued() 'elements.'

/\ QUEUED() returns 2 elements \/

PULL data1 /\ PULL gets the date off the queue. \/

PULL data2 /\ PULL gets the time off the queue. \/

SAY 'The first element on the queue was' data1

SAY 'The second element on the queue was' data2

SAY 'Now the queue has' queued() 'elements again.'

/\ QUEUED() returns ð elements. \/

EXIT

Using the QUEUE Instruction
The QUEUE instruction places a string at the end of the current queue buffer. The
QUEUE instruction imitates the classical manner of placing information on a queue.
That is, the last data placed by QUEUE is the data at the end of the queue and
would be the last data available for a PULL. The following example illustrates the
use of the QUEUE instruction.

116 REXX/400 Programmer’s Guide V4R1

Example 1: Using the PULL and QUEUE instructions

SAY 'To start with, the queue has' queued() 'elements.'

/\ QUEUED() returns ð elements. \/

QUEUE TIME() /\ Add the current time to the queue. \/

QUEUE DATE() /\ Add the current date to the queue. \/

/\ This goes after what is already in the queue.\/

SAY 'Now the queue has' queued() 'elements.'

/\ QUEUED() returns 2 elements. \/

PULL data1 /\ PULL gets the time off the queue. \/

PULL data2 /\ PULL gets the date off the queue. \/

SAY 'The first element on the queue was' data1

SAY 'The second element on the queue was' data2

SAY 'Now the queue has' queued() 'elements again.'

/\ QUEUED() returns ð elements. \/

EXIT

Example 2: Using the PARSE LINEIN instruction.

/\ This program illustrates how PARSE LINEIN reads a response from \/

/\ the user, even when there are lines in the queue. \/

/\ Suppose you want to send a message to selected users of your \/

/\ system. And suppose you already have an external function which \/

/\ puts a list of all users into the REXX queue. This program shows \/

/\ how you can select some of the users listed by that function. \/

message = 'Please come to a meeting in my office at 1ð:ðð.'

CALL queryusers /\ Function queues a list of users.\/

DO QUEUED()

 PULL userid

SAY 'Enter YES if you want to send the message to' userid

PARSE UPPER LINEIN answer

IF answer = 'YES' THEN "SNDMSG MSG('"message"') TOUSR("userid")"

END

 Chapter 9. Using the REXX External Data Queue 117

Example 3: This example shows a CL command that uses a REXX program as
its command processing program. This example copies the contents of a file into
the REXX external data queue.

CMD PROMPT('Copy file to REXX data que')

PARM KWD(FROMFILE) TYPE(QUAL1) MIN(1) PROMPT('FROM +

 file')

PARM KWD(MBR) TYPE(\NAME) LEN(1ð) DFT(\FIRST) +

SPCVAL((\FIRST)) MIN(ð) PROMPT('Member')

PARM KWD(NMBRCDS) TYPE(\DEC) LEN(6) DFT(\ALL) +

SPCVAL((\ALL 999999)) PROMPT('Number of +

records to copy')

 QUAL1: QUAL TYPE(\NAME) LEN(1ð) MIN(1)

QUAL TYPE(\NAME) LEN(1ð) DFT(\LIBL) +

SPCVAL((\CURLIB) (\LIBL)) PROMPT('Library')

/\ Command Processing REXX program for CPYFTOREXQ command. \/

/\ Parse out the library and file. \/

PARSE UPPER ARG 'FROMFILE(' lib '/' file ')'

/\ Parse out the member. \/

PARSE UPPER ARG 'MBR(' mbr ')'

/\ Parse out the number of records to copy. \/

PARSE UPPER ARG 'NMBRCDS(' count ')'

/\ Check if object exists. \/

'CHKOBJ OBJ('lib'/'file') OBJTYPE(\FILE) MBR('mbr')'

IF rc ¬= 'ð' THEN

IF POS(rc,'CPF98ð1 CPF981ð') ¬= ð THEN DO

msg = 'File member specified:' lib'/'file mbr 'was not found'

 'SNDPGMMSG MSG(&msg)'

 EXIT

END

IF count = '\ALL' THEN count = '999999999'

/\ Override STDIN to the LIB/FILE parms. \/

'OVRDBF FILE(STDIN) TOFILE('lib'/'file') MBR('mbr')'

DO count

/\ Read data from STDIN. \/

 PARSE LINEIN data

IF data == '' THEN

 LEAVE

/\ QUEUE data into REXX queue, FIFO order from PULL. \/

 QUEUE data

END

EXIT

118 REXX/400 Programmer’s Guide V4R1

Using the PULL Instruction
The PULL instruction retrieves a line from the front of the queue. This instruction is
equal to PARSE UPPER PULL, which uppercases the line pulled from the queue.
To pull from the queue without uppercasing, use PARSE PULL. The PULL
instruction imitates pulling data from a stack. That is, the last data placed by the
PUSH instruction would be the first retrievable data by the PULL instruction. The
following example illustrates the use of the PULL instruction.

/\ The Pull instruction is a shorthand version of Parse Upper Pull. \/

test = 'This is a test'

PUSH 'test'

PUSH 'test'

PUSH 'test'

PARSE UPPER PULL input1

PULL input2

SAY 'Parse Upper Pull got' input1

SAY 'Pull got' input2

IF input1 == input2 THEN SAY 'The two different instructions work the same.'

ELSE SAY 'You will never see this message.'

PARSE PULL input3

Whenever the queue is empty, the PULL instruction operates in a manner identical
with the PARSE UPPER LINEIN instruction which reads lines from the STDIN. The
PARSE UPPER LINEIN instruction can, however, be used directly even if the
queue is not empty, when input from STDIN is also required or when there is data
on the queue which must not be disturbed.

Using the Add REXX Buffer (ADDREXBUF) Command
The ADDREXBUF command expects a REXX variable into which the identification
number of the newly created queue buffer would be returned. The command
allows a REXX program to establish new buffers in the REXX external data queue.
The ADDREXBUF command can only be used in REXX programs and CL programs.
If the queue is not buffered with this command, it is treated as one large buffer.

PUSH 'LINE ONE'

PUSH 'LINE TWO'

PUSH 'LINE THREE'

QUEUE 'LAST LINE'

Assuming a previously empty REXX external data queue, these instructions would
result in the following on the queue:

┌─────────────────────┐%────────PUSH adds lines here

│LINE THREE │────────5PULL takes this line

 ├─────────────────────┤

 │LINE TWO │

 ├─────────────────────┤

 │LINE ONE │

 ├─────────────────────┤

 │LAST LINE │

└─────────────────────┘%────────QUEUE adds data here

Figure 1. External data queue before ADDREXBUF

 Chapter 9. Using the REXX External Data Queue 119

Running this set of instructions affects the queue as shown:

BUFFERNUM = ð

'ADDREXBUF &BUFFERNUM'

QUEUE 'NEWBUF FIRSTQ'

PUSH 'NEWBUF PUSH'

QUEUE 'NEWBUF SECONDQ'

┌─────────────────────┐%──────────PUSH adds lines here

│NEWBUF PUSH │──────────5PULL takes this line

 ├─────────────────────┤

 │NEWBUF FIRSTQ │

 ├─────────────────────┤

 │NEWBUF SECONDQ │

└─┬───────────────────┴─┐%────────QUEUE adds data here

 │LINE THREE │

 ├─────────────────────┤

 │LINE TWO │

 ├─────────────────────┤

 │LINE ONE │

 ├─────────────────────┤

 │LAST LINE │

 └─────────────────────┘

Figure 2. External data queue after ADDREXBUF

Using the Remove REXX Buffer (RMVREXBUF) Command
The Remove REXX Buffer (RMVREXBUF) command expects an identification
number of the queue buffer which is to be removed. This command deletes buffers
and any lines they may contain from the REXX external data queue.

Assuming the last example above, using ADDREXBUF, if the following REXX
instructions were run:

 'RMVREXBUF' buffernum

 PULL aline

The REXX external data queue would then look like this:

┌─────────────────────┐%────────PUSH adds lines here

│LINE TWO │────────5PULL takes this line

 ├─────────────────────┤

 │LINE ONE │

 ├─────────────────────┤

 │LAST LINE │

└─────────────────────┘%────────QUEUE adds data here

Figure 3. External data queue after RMVREXBUF

Now, if instead of issuing a RMVREXBUF command after getting the queue into the
state shown in Figure 2, you were to run the following set of REXX instructions:

PULL line1 /\ line1 = 'NEWBUF PUSH' \/

PULL line2 /\ line2 = 'NEWBUF FIRSTQ' \/

PULL line3 /\ line3 = 'NEWBUF SECONDQ' \/

PULL line4 /\ line4 = 'LINE THREE' \/

The queue would look the same as in the Figure 3. Buffer boundaries created with
the ADDREXBUF command are ignored by the PULL instruction.

120 REXX/400 Programmer’s Guide V4R1

Specifying a buffer number on the RMVREXBUF command causes existing buffers
created after the one whose number is specified to be destroyed. Thus, this
command can be used to “cleanup” after a particularly unruly user of the REXX
external data queue. Also, if you want to totally erase the queue, specify the *ALL
value on the buffer parameter of the RMVREXBUF command. This will cause the
queue to be cleared. In addition, if the queue is damaged, this command can be
used to delete and re-create the queue.

The following example shows how to use ADDREXBUF and RMVREXBUF:

/\ REXX program which demonstrate how to use the ADDREXBUF and \/

/\ RMVREXBUF commands with other REXX queuing services. \/

bufn = ð

'ADDREXBUF &BUFN' /\ Add buffer '1' to the queue. \/

PUSH 'Buffer' bufn ': Line 1 ' /\ Add a line to the queue. \/

PUSH 'Buffer' bufn ': Line 2 ' /\ Add a line to the queue. \/

PUSH 'Buffer' bufn ': Line 3 ' /\ Add a line to the queue. \/

'ADDREXBUF &BUFN' /\ Add buffer '2' to the queue. \/

PUSH 'Buffer' bufn ': Line 1 ' /\ Add a line to the queue. \/

PUSH 'Buffer' bufn ': Line 2 ' /\ Add a line to the queue. \/

PULL entry /\ Pull a line from the queue. \/

SAY entry /\ Displays 'Buffer 2: line 2'. \/

'RMVREXBUF &BUFN' /\ Remove buffer '2' \/

/\ from the queue. \/

PULL entry /\ Pull a line from the queue. \/

SAY entry /\ Displays 'Buffer 1: line 3'. \/

'ADDREXBUF &BUFN' /\ Add buffer '2' to the queue. \/

PUSH 'Buffer' bufn ': Line 1 ' /\ Add a line to the queue. \/

'ADDREXBUF ' /\ Add buffer '3', \/

/\ do not save bufn. \/

PUSH 'Buffer' bufn + 1 ': Line 1 ' /\ Add a line to the queue. \/

'RMVREXBUF &BUFN' /\ Remove buffer '2' from queue.\/

/\ Will remove '2' and '3'. \/

PULL entry /\ Pull a line from the queue. \/

SAY entry /\ Displays 'Buffer 1: line 2'. \/

'ADDREXBUF &BUFN' /\ Add buffer '2' to the queue. \/

PUSH 'Buffer' bufn ': Line 1 ' /\ Add a line to the queue. \/

'RMVREXBUF \CURRENT' /\ Remove buffer '2' \/

/\ from the queue. \/

 /\ At this point, buffer 1 has 1 entry. \/

'ADDREXBUF &BUFN' /\ Add buffer '2' to the queue. \/

PUSH 'Buffer' bufn ': Line 1 ' /\ Add a line to the queue. \/

 Chapter 9. Using the REXX External Data Queue 121

'ADDREXBUF &BUFN' /\ Add buffer '3' to the queue. \/

PUSH 'Buffer' bufn ': Line 1 ' /\ Add a line to the queue. \/

PUSH 'Buffer' bufn ': Line 2 ' /\ Add a line to the queue. \/

SAY QUEUED() /\ Displays '4', total of all \/

/\ entries for all buffers in \/

/\ the queue. \/

PULL entry /\ Pull a line from the queue. \/

SAY entry /\ Displays 'Buffer 3: line 2'. \/

PULL entry /\ Pull a line from the queue. \/

SAY entry /\ Displays 'Buffer 3: line 1'. \/

PULL entry /\ Pull a line from the queue. \/

SAY entry /\ Displays 'Buffer 2: line 1'. \/

PULL entry /\ Pull a line from the queue. \/

SAY entry /\ Displays 'Buffer 1: line 1'. \/

/\ Because the queue is empty, \/

/\ any further PULLs will pull from STDIN, not the queue. \/

PULL entry /\ Pull a line from STDIN. \/

SAY entry /\ Displays your entry. \/

'RMVREXBUF \ALL' /\ Clears all entries from the queue. \/

RETURN

122 REXX/400 Programmer’s Guide V4R1

Chapter 10. Determining Problems with REXX Programs

REXX provides several tools for determining where problems are within the REXX
program. In this chapter the following topics are covered:

� Using the TRACE Instruction and the TRACE Function
� Using the Trace REXX (TRCREX) Command.

For more information on other REXX tools for identifying problems within a REXX
program, see the REXX/400 Reference.

Using the TRACE Instruction and the TRACE Function
The TRACE instruction provides you with a powerful tool for determining errors.
TRACE lets you see how expressions are being evaluated while the program is
actually running.

The TRACE instruction can be placed anywhere within a REXX program where you
want more specific information about how the program is being interpreted.

When a TRACE instruction is being interpreted, the first letter of the second word
determines the type of tracing, and the remainder of the second word is ignored.

The following are the most commonly used trace settings. For more information on
tracing and the other trace settings, see the REXX/400 Reference.

Trace Intermediates As each expression is evaluated, the result of each operation,
the Intermediate results, is shown on the display.

Trace Results When each expression has been evaluated, the final result is
shown on the display.

Trace Normal Only commands that would raise the failure condition are
displayed, along with their return code. This is the default
setting.

Trace Errors Commands that would raise an error or failure are displayed,
along with their return code.

The TRACE function returns the current trace settings, when used without
arguments. When an argument is specified, the trace setting is changed to the
specified argument, and the previous setting is returned.

In order for TRACE results to be shown on the display, the character identifier
(CHRID) must match the character set and code page (CCSID) of the REXX
source file member being traced.

 Copyright IBM Corp. 1997 123

Using Interactive Tracing
Interactive tracing is turned on and off by placing a question mark immediately in
front of the TRACE setting. For example, TRACE ?R will provide interactive tracing
of results. Interactive tracing lets you examine each clause, one at a time, and
continue interpretation by pressing the Enter key. Interactive tracing causes the
program to pause after it interprets most instructions that result in trace output.
The exceptions include SIGNAL, CALL, and reiterations of DO loops.

If interactive tracing is turned on and another TRACE instruction is encountered,
the new trace setting is ignored. Unlike the TRACE instruction, the TRACE
function will change the current trace setting when it is encountered during
interactive tracing.

When interactive tracing is turned on, you are prevented from overriding STDIN.

Note: Do not turn interactive tracing on for REXX programs which override STDIN.

Using Trace Settings
The following example lets you experiment with different trace settings. By
entering the particular trace setting you are interested in, you can see how tracing
works differently with each option.

/\ This program performs a variety of operations. The different \/

/\ trace options are used in this program to show how they differ. \/

SAY 'Enter trace option to use'

PULL traceopt

TRACE VALUE traceopt

one = 1

SAY 'The maximum of 1 and -2 is' max(one,-2)

"SNDMSG('Hello') TOUSR(\WRONG)"

Trace Output for the TRACE Intermediates Setting: If you choose the
intermediates option when you run this program, the trace output looks like the
following:

à ð
 i

5 \-\ one = 1;

 >L> "1"

6 \-\ Say 'The maximum of 1 and -2 is' MAX(one, - 2);

>L> "The maximum of 1 and -2 is"

 >V> "1"

 >L> "2"

 >P> "-2"

 >F> "1"

>O> "The maximum of 1 and -2 is 1"

The maximum of 1 and -2 is 1

 7 \-\ 'SNDMSG('Hello') TOUSR(\WRONG)';

 >L> "SNDMSG('Hello') TOUSR(\WRONG)"

 +++ RC(CPFððð1)

Press ENTER to end terminal session.

 ==> ___

3=Exit F4=End of File F6=Print F9=Retrieve F17=Top

 18=Bottom F19=Left F2ð=Right F21=User Window

á ñ

124 REXX/400 Programmer’s Guide V4R1

Trace Output for the TRACE Results Setting: If you choose the results option,
the trace output looks like the following:

à ð
Enter trace option to use

 r

5 \-\ one = 1;

 >>> "1"

6 \-\ Say 'The maximum of 1 and -2 is' MAX(one, - 2);

>>> "The maximum of 1 and -2 is 1"

The maximum of 1 and -2 is 1

 7 \-\ 'SNDMSG('Hello') TOUSR(\WRONG)';

 >>> "SNDMSG('Hello') TOUSR(\WRONG)"

 +++ RC(CPFððð1)

Press ENTER to end terminal session.

End of terminal session.

 ==> ___

3=Exit F4=End of File F6=Print F9=Retrieve F17=Top

 18=Bottom F19=Left F2ð=Right F21=User Window

á ñ

Trace Output for the TRACE Normal Setting: If you choose the normal option,
the trace output looks like the following:

à ð
Enter trace option to use

 n

The maximum of 1 and -2 is 1

 7 \-\ 'SNDMSG('Hello') TOUSR(\WRONG)';

 +++ RC(CPFððð1)

Press ENTER to end terminal session.

 ==> ___

3=Exit F4=End of File F6=Print F9=Retrieve F17=Top

 18=Bottom F19=Left F2ð=Right F21=User Window

á ñ

 Chapter 10. Determining Problems with REXX Programs 125

Trace Output for the TRACE Errors Setting: If you choose the errors option, the
trace output looks like the following:

à ð
Enter trace option to use

 e

The maximum of 1 and -2 is 1

 7 \-\ 'SNDMSG('Hello') TOUSR(\WRONG)';

 +++ RC(CPFððð1)

Press ENTER to end terminal session.

 ==> ___

3=Exit F4=End of File F6=Print F9=Retrieve F17=Top

 18=Bottom F19=Left F2ð=Right F21=User Window

á ñ

Using Trace Settings in Subroutines
When tracing is changed in an internal routine, the previous trace setting is
restored when the internal routine returns to the main program. This lets you easily
turn off tracing at the top of your working subroutines while you are still debugging
other parts of your program, as shown in the following example.

TRACE I

SAY 'This program calculates 1ð factorial divided by 9 factorial'

SAY '(And it does it the hard way.)'

answer = fact(1ð)/ fact(9)

SAY 'The answer is' answer

EXIT

fact: PROCEDURE

CALL TRACE O

ARG number

answer = 1

DO i = 1 TO number

answer = answer \ i

END

RETURN answer

126 REXX/400 Programmer’s Guide V4R1

When you run this example, the following will be displayed:

 Trace Output

2 \-\ SAY 'This program calculates 1ð factorial divided by 9 factorial';

 >L> "This program calculates 1ð factorial divided by 9 factorial"

This program calculates 1ð factorial divided by 9 factorial

3 \-\ SAY '(And it does it the hard way.)';

 >L> "(And it does it the hard way.)"

(And it does it the hard way.)

4 \-\ answer = fact(1ð) / fact(9);

 >L> "1ð"

 8 \-\ fact:

 8 \-\ Procedure;

 9 \-\ CALL TRACE O;

 >L> "O"

 >F> "36288ðð"

 >L> "9"

 8 \-\ fact:

 8 \-\ Procedure;

 9 \-\ CALL TRACE O;

 >L> "O"

 >F> "36288ð"

 >O> "1ð"

5 \-\ SAY 'The answer is' answer;

 >L> "The answer is"

 >V> "1ð"

 >O> "The answer is 1ð"

The answer is 1ð

 6 \-\ EXIT;

Interactive Tracing Example: The following example uses interactive tracing to
recover from a command error.

/\ This program has an error in it. Look below to see how \/

/\ interactive tracing can be used to recover from the error. \/

TRACE ?E /\ Set tracing to pause after error commands. \/

SAY 'Tracing will turn on when a command has an error'

user = '\SYSORP' /\ This is misspelled \/

"SNDMSG MSG('Hello') TOUSR("user")"

SAY 'Now we are past the error'

"SNDMSG MSG('Hello again') TOUSR("user")"

 Chapter 10. Determining Problems with REXX Programs 127

Trace Output: When this program is run the error occurs. It is interactively
corrected, user = '\SYSOPR'. The = sign causes the last instruction, which is the
command, to be run again. With the assignment changed, the program runs.

à ð
Tracing will turn on when a command has an error

5 \-\ 'SNDMSG MSG('Hello') TOUSR('user')';

 +++ RC(CPFððð1)

+++ Interactive trace. "Trace Off" to end debug ENTER to Continue.

user = '\SYSOPR'

 =

Now we are past the error

Press ENTER to end terminal session.

 ==> ___

3=Exit F4=End of File F6=Print F9=Retrieve F17=Top

 18=Bottom F19=Left F2ð=Right F21=User Window

á ñ

Interpreting Trace Results
Output from the TRACE instruction is always written to STDERR. In addition, it is
placed in the job log as command (CMD) messages. When you are running a job
interactively, all input is also placed in the job log. If you are running in batch mode
and the REXX program finds an interactive trace setting, the interactive setting is
ignored. For example, if a REXX program issues the instruction TRACE ?I while in
batch mode, it is treated as if the instruction was TRACE I.

 TRACE Symbols
Output from the TRACE instruction shows a listing with lines prefixed by various
symbols. Each symbol identifies actions taken within the program. These symbols
can be used to differentiate REXX command (CMD) messages from other
command messages in the job log. User input during interactive tracing is placed
in the job log with no prefixes.

\-\ This identifies the source of a single clause, that is, the data actually in the
program.

+++ This identifies a trace message. This may be the nonzero return code from
a command, the prompt message when interactive debug is entered, an
indication of a syntax error when in interactive debug, or the traceback
clauses after a syntax error in the program.

>>> This identifies the result of an expression (for TRACE R) or the value
assigned to a variable during parsing, or the value returned from a
subroutine call.

>.> This identifies the value assigned to a placeholder during parsing

If you are using TRACE Intermediates (TRACE I), the following symbols are also
used.

128 REXX/400 Programmer’s Guide V4R1

>C> The data traced is the name of a compound variable, traced after
substitution and before use, provided that the name had the value of a
variable substituted into it.

>F> The data traced is the result of a function call.

>L> The data traced is a literal (string, uninitialized variable, or constant
symbol).

>O> The data traced is the result of an operation on two terms.

>P> The data traced is the result of a prefix operation.

>V> The data traced is the contents of a variable.

Using the Trace REXX (TRCREX) Command
The TRACE instruction is used within a REXX program. The Trace REXX
(TRCREX) command lets you set interactive tracing of a REXX program from
outside that program. See the CL Reference for the complete syntax of this
command.

TRCREX sets the trace option which is in effect when interpretation of a REXX
program begins. The TRCREX setting remains in effect for all REXX programs until
it is changed by issuing another TRCREX command or until the job ends.

Since TRCREX turns on interactive tracing of a program, and TRACE instructions in
REXX programs are not run during interactive tracing, TRACE instructions may be
ignored while a TRCREX setting is in effect. The TRACE function in a program can
override any trace setting.

Changing the trace setting in a program will not affect the TRCREX setting. If you
run a program with a TRCREX setting in effect, change the TRACE setting in it, and
then run another REXX program, the TRCREX setting will be in effect at the start of
the second program.

 Chapter 10. Determining Problems with REXX Programs 129

130 REXX/400 Programmer’s Guide V4R1

Chapter 11. Understanding Condition Trapping

Conditions are a set of problems which might occur while running your REXX
program. In REXX/400, condition traps can be set within a REXX program to
handle ERROR, FAILURE, NOVALUE, HALT, or SYNTAX conditions. This chapter
summarizes the key information you need to know to understand conditions and
use condition traps. Further detail is provided in the REXX/400 Reference. To
help you understand how to use condition traps within a REXX program, this
chapter covers:

 � Defining Conditions
� Defining Condition Traps
� Using Condition Trapping.

 Defining Conditions
Conditions are problems or other occurrences which may arise while your REXX
program is running. The following conditions are recognized by REXX and can be
controlled by setting condition traps.

ERROR The ERROR condition arises whenever a REXX program
issues a command that results in an error being indicated by
the command environment. For the CL command
environment (COMMAND), this means any command that
causes an escape message (or status or notify messages
identified by the SETMSGRC built-in function) to be sent to
the interpreter, except for those which cause the FAILURE
condition, as noted below. Other command environments can
have their own rules when they want to raise the error
condition. They indicate an error description as specified for
the command interface (see the user-defined command
environment discussion in the REXX/400 Reference). In all
cases, command failures will raise the ERROR condition when
a FAILURE condition trap is not set.

FAILURE The FAILURE arises whenever a REXX program issues a
command that results in a failure being indicated by the
command environment. For the CL command environment
(COMMAND), this means any command that causes escape
message CPF0001 or CPF9999 to be sent to the interpreter.
For all other command environments, a failure condition
results any time: (1) an escape message is received by the
interpreter from the command environment; (2) when the
command environment could not be found or you were not
authorized to the command environment; or (3) when the
command environment indicates an error condition as
specified for the command interface (see the user-defined
command environment discussion in the REXX/400
Reference). In all cases, command failures will raise the
ERROR condition when a FAILURE condition trap is not set.

NOVALUE The NOVALUE condition arises whenever a REXX program
tries to use the value of a variable that has not been given a
value. If no trap for this condition is set, then the value used

 Copyright IBM Corp. 1997 131

for the variable is the same as the name of the variable with
all the lowercase characters translated to uppercase.

HALT The HALT condition arises when a REXX exit program
indicates that the HALT condition is to be raised. Unless an
exit program is specified on the call of the interpreter for the
RXHLT function code, there is no way to raise this condition.
For more information on the RXHLT exit, see the REXX/400
Reference. If this condition is not trapped, the program ends
with an error.

SYNTAX The SYNTAX condition arises whenever the REXX interpreter
finds a serious error while running a REXX program. This
may be a syntax error in the program, an error in a system
service called by the interpreter, or an error found within the
interpreter itself. If this condition is not trapped, the program
ends immediately.

Defining Condition Traps
A REXX program will be made aware that a condition has occurred if the program
is using a condition trap for that condition. A condition trap is a routine within a
REXX program to which control is given when the related condition occurs. A
condition trap must be enabled before REXX will call it. Routines are discussed in
more detail in Chapter 8, “Using REXX Functions and Subroutines” on page 99. A
condition trap is enabled by using the SIGNAL ON or CALL ON instructions. The
instruction that enables a condition trap must identify the condition the trap is to be
used for and a REXX label. The label identifies the point in the program that
control is to be given to when the specified condition occurs.

If the condition trap is enabled by using the SIGNAL ON instruction, a branch will
be made to the label that was identified. In this case, the condition trap is not
considered to be an internal routine and, therefore, is not expected to make a
return. If the condition trap is enabled by using a CALL ON, the condition trap is
considered an internal routine. The condition trap is expected to return, at which
time control returns to the point following the command that had the error.

When the condition trap gains control, there will be several pieces of information
available that can be used to analyze the error:

� The variable RC will contain the return code that the command environment
returned.

� A message will be on the message queue, from which it can be received, if the
command environment sent a message.

� The special variable SIGL will contain the line number of the clause that was
being run when the condition was raised.

� The CONDITION function can return the text of the failing command, the
current trapped condition, and whether the condition was raised by a CALL or a
SIGNAL instruction.

Using a condition trap is optional. The actions taken if you do not use a trap is
described in “Defining Conditions” on page 131. Moreover, after a condition trap is
enabled, it can be later disabled. When a condition trap does not exist or is

132 REXX/400 Programmer’s Guide V4R1

disabled, the REXX program will continue to run, starting with the next clause that
follows the command in error.

Using the CONDITION Built-in Function
The condition built-in function returns information associated with a condition when
that condition is trapped. You can specify several options to retrieve different
information about the condition:

For more information on ON, OFF, and DELAYED states, see the REXX/400
Reference.

Option Information

C Name of the trapped condition (SYNTAX, NOVALUE, ERROR, FAILURE,
or HALT)

D Descriptive string. This value depends on which condition is trapped.

SYNTAX Returns the error number

NOVALUE Returns the name of the variable

ERROR Returns the command string

FAILURE Returns the command string

HALT Returns an optional informational string provided by the exit
program which raised the condition

I Returns the instruction which set the condition (CALL or SIGNAL). This is
the default.

S Returns the status of the condition (ON, OFF, or DELAYED).

Using Condition Trapping
You can trap three types of errors: errors in syntax, errors in using variables, and
errors in commands.

Trapping Syntax Errors
Errors in REXX syntax can be trapped using the SYNTAX condition. The following
program provides a syntax checker. You can enter any REXX instruction or a
command, and the condition trap will run if you have an error in the syntax.

/\ This program uses a syntax handler to recover from syntax errors. \/

/\ The REXX error number is passed to the variable RC. \/

restart:

Signal on Syntax

DO UNTIL input = ''

SAY 'Enter a REXX statement or command to run, or null line to exit'

 PULL input

 INTERPRET input

 END

EXIT

Syntax:

SAY 'You had an error in that instruction.'

SAY 'The error was number' RC 'which means' ERRORTEXT(RC)

 Chapter 11. Understanding Condition Trapping 133

SAY 'The instruction was' SOURCELINE(SIGL)

Signal restart

The SYNTAX condition is also raised for other serious errors that may have nothing
to do with program syntax. The following are examples of situations where the
SYNTAX condition would be raised:

� A REXX exit program indicates that it has encountered a serious error, which
results in REXX error 48, “Failure in system service.”

� A non-REXX external function ends with an escape message, which results in
REXX error 40, “Incorrect call to routine.”

� The interpreter finds an internal error, which results in REXX error 49,
“Interpretation error.”

� An attempt was made to divide by zero, producing REXX error 42, “Arithmetic
overflow/underflow.”

In general, when any REXX error occurs (an error identified by number), the
SYNTAX condition is raised. The only exception to this is REXX error 4, “Program
interrupted”, which raises the HALT condition.

Trapping Errors in Using Variables
In REXX, you do not declare variables. When you use a variable without assigning
a value to it, its name, in uppercase, is used as its value. For example, SAY hello

produces HELLO as its output. This means you can create new variables without
noticing. To determine when variables are used before they are assigned a value,
use a NOVALUE trap. The REXX special variable SIGL stores the line number in
the REXX program where the error occurred, as shown in the following example:

Signal on Novalue

message = The current time is TIME()

"SNDMSG MSG('"message"') TOUSR(\SYSOPR)"

EXIT

novalue:

SAY 'A variable was referenced before being used in line number' SIGL

SAY 'The variable name was' CONDITION('D')

SAY 'The instruction was' SOURCELINE(SIGL)

EXIT

The VALUE function returns or sets the value of a variable whose name may be a
string expression. VALUE does not trigger a NOVALUE condition, so it can be
used to check the contents of variables without triggering a NOVALUE trap.

Trapping Errors in Commands
Errors resulting from commands are trapped by using the ERROR condition. This
condition is also discussed in “Understanding the Error and Failure Conditions” on
page 85.

134 REXX/400 Programmer’s Guide V4R1

Example 1: This example shows a REXX program which tries to send a
command to the CL command environment. The error is trapped and processing
continues at the ERROR: routine. The line number where the error occurred is
placed in SIGL, and a message is displayed.

/\ Signal on Error traps system commands that cause errors. \/

Signal on Error

"SNDMSG MSG('This message is missing a quote) TOUSR(\SYSOPR)"

EXIT

Error: SAY 'The command on line' SIGL 'had an error'

SAY 'The error return code on that command is' RC

EXIT

Example 2: This example of trapping command errors adds the SOURCELINE
built-in function. Now, not only can you discover the line in the REXX program
where the error occurred, you can use SIGL to determine the actual command
string, and possibly recover from the error. This program uses the CALL
instruction, rather than the SIGNAL instruction so a new command can be entered,
and the REXX program will continue to run.

/\ Signal on Error traps system commands that cause errors. \/

/\ This program shows one option for recovering from errors. \/

Call on Error /\ Using CALL means we can return after the trap. \/

"SNDMSG MSG('This message is missing a quote) TOUSR(\SYSOPR)"

SAY 'This is the instruction after the command'

EXIT

Error: SAY 'The command on line' SIGL 'had an error'

SAY 'The error return code on that command is' RC

SAY 'The line from the program was:' SOURCELINE(SIGL)

SAY 'Enter the correct command, or null line to exit'

PARSE PULL newcommand

IF newcommand = '' THEN EXIT

 newcommand

RETURN

Example 3: Different traps may be used for the same condition at different points
in the program. The following example shows an outline of how errors might be
handled differently, when some commands are necessary to the program, and
others are less important.

Signal on Error Name setuperr

/\ This is the setup part of the program where the program should \/

/\ immediately stop without doing anything else if command errors \/

/\ occurs. \/

.

.

.

Signal on Error Name runerr

/\ This is the main part of the program where the program should also\/

/\ immediately stop without doing anything else if command errors \/

 Chapter 11. Understanding Condition Trapping 135

/\ occurs. Any cleanup from setup is done. \/

.

.

.

Call on Error Name cleanuperr

/\ At the end of the program, some commands are issued to "clean up" \/

/\ after the program. We assume that these commands do not depend \/

/\ on each other, and that even if one has an error, the other should\/

/\ still be run. \/

.

.

.

Exit

/\\\/

Setuperr:

Say 'An error occurred during program setup. The program is stopping.'

Exit

Runerr:

Say 'An error occurred in the main part of the program.'

Say 'The program is stopping.'

Exit

Cleanuperr:

Say 'An error occurred during program clean-up. The program is continuing.'

Return /\ Goes back to next instruction of program. \/

Trapping Multiple Conditions
You can trap several conditions within a REXX program, and change the traps as
the program progresses. The following example shows a REXX program which
monitors for both ERROR and NOVALUE conditions:

Call on Error

Signal on Novalue

'BADCMD'

SAY hello

EXIT /\ Normal exit \/

Error:

SAY 'An error occurred on a command in line number' SIGL

SAY 'The command that caused the error was' CONDITION('D')

SAY 'The command set a return code of' RC

SAY 'Enter 1 if you want the program to continue.'

SAY 'Enter anything else to quit now'

PULL answer

IF answer = '1' THEN RETURN

 ELSE EXIT

Novalue:

SAY 'The variable' CONDITION('D') 'was used in line number' SIGL

SAY 'before any value was assigned to it. Program stopping.'

EXIT

136 REXX/400 Programmer’s Guide V4R1

 Appendix A. REXX Keywords

This list shows the words which REXX interprets as REXX keyword instructions.

 ADDRESS

 ARG

 CALL

 DO

 DROP

 EXIT

 IF

 INTERPRET

 ITERATE

 LEAVE

 NOP

 NUMERIC

 OPTIONS

 PARSE

 PROCEDURE

 PULL

 PUSH

 QUEUE

 RETURN

 SAY

 SELECT

 SIGNAL

 TRACE

 Copyright IBM Corp. 1997 137

138 REXX/400 Programmer’s Guide V4R1

Appendix B. REXX Built-in Functions

The following is a list of the REXX built-in functions:

 ABBREV (Abbreviation)
ABS (Absolute Value)

 ADDRESS
 ARG (Argument)

BITAND (Bit by Bit AND)
BITOR (Bit by Bit OR)
BITXOR (Bit by Bit Exclusive OR)
B2X (Binary to Hexadecimal)

 CENTER/CENTRE
 COMPARE
 CONDITION
 COPIES

C2D (Character to Decimal)
C2X (Character to Hexadecimal)

 DATATYPE
 DATE

DBCS (Double-Byte Character Set) functions. See Appendix C, “Double-Byte
Character Set Support” on page 141, for more information.
DELSTR (Delete String)
DELWORD (Delete Word)

 DIGITS
D2C (Decimal to Character)
D2X (Decimal to Hexadecimal)

 ERRORTEXT
 FORM
 FORMAT
 FUZZ
 INSERT

LASTPOS (Last Position)
 LEFT
 LENGTH
 MAX (Maximum)
 MIN (Minimum)
 OVERLAY
 POS (Position)
 QUEUED
 RANDOM
 REVERSE
 RIGHT

SETMSGRC (Set Message Return Code)
 SIGN
 SOURCELINE
 SPACE
 STRIP
 SUBSTR (Substring)
 SUBWORD
 SYMBOL
 TIME
 TRACE

 Copyright IBM Corp. 1997 139

 TRANSLATE
 TRUNC (Truncate)
 VALUE
 VERIFY
 WORD
 WORDINDEX
 WORDLENGTH

WORDPOS (Word Position)
 WORDS

XRANGE (Hexadecimal Range)
X2B (Hexadecimal to Binary)
X2C (Hexadecimal to Character)
X2D (Hexadecimal to Decimal)

140 REXX/400 Programmer’s Guide V4R1

Appendix C. Double-Byte Character Set Support

Double-byte character sets (DBCS) support languages that have more characters
than can be represented by eight bits, such as Japanese Kanji and Korean
Hangeul. REXX supports DBCS by using:

1. DBCS functions that specifically support the processing of DBCS character
strings:

 DBADJUST
 DBBRACKET
 DBCENTER
 DBLEFT
 DBRIGHT
 DBRLEFT
 DBRRIGHT
 DBTODBCS
 DBTOSBCS
 DBUNBRACKET
 DBVALIDATE
 DBWIDTH

2. The OPTIONS instruction, which controls how REXX evaluates DBCS data.
This instruction uses two options:

� ETMODE which supports DBCS literal strings

� EXMODE which provides full logical character support to enable data
operations

The effect of OPTIONS 'ETMODE' depends on the CCSID of the REXX source
file. For SBCS CCSIDs (those without a DBCS component), OPTIONS 'ETMODE'
is coded when literal strings or comments containing DBCS characters are to be
checked for being valid DBCS strings. This is useful to prevent, for example,
premature termination of a comment by the occurrence of the '*/' code points
within a double-byte character string.

For DBCS CCSIDs (those with a DBCS component), OPTIONS 'ETMODE' is
automatically in effect for the REXX source file, and should therefore not be coded
in the REXX procedure.

For more information on understanding the difference between SBCS CCSIDs and
DBCS CCSIDs, see the National Language Support.

Since each DBCS character consists of two bytes, REXX distinguishes DBCS data
from single-byte data by the presence of shift-out (SO (X'0E')) and shift-in (SI
(X'0F')) bracket characters. The SO and SI characters are the delimiters for
DBCS text.

When a DBCS string is written to STDOUT, the string will be segmented and each
segment will have its own SO and SI pair, at the beginning of each line. The
length of each segment will be shortened to take in account the SO and SI
characters.

 Copyright IBM Corp. 1997 141

 Notational conventions
This book uses the following notational conventions:

DBCS character -> .A .B .C .D

SBCS character -> a b c d e

DBCS blank -> '. '

EBCDIC shift-out (X'ðE') -> <

EBCDIC shift-in (X'ðF') -> >

Note: In EBCDIC, the shift-out (SO) and shift-in (SI) characters distinguish DBCS
characters from SBCS characters.

For more details about the instructions and functions that support the processing of
DBCS character strings (used as data) and symbols, see the REXX/400 Reference.

142 REXX/400 Programmer’s Guide V4R1

Appendix D. Operators and Order of Operations

 Operators

Table 1. String Concatenation

Operator Operation

(blank) Concatenate terms with one blank in between

|| Concatenate terms without a blank (force abuttal)

(abuttal) Concatenate without an intervening blank

Table 2. Arithmetic Operators

Operator Operation

+ Add

- Subtract

* Multiply

/ Divide

% Divide and return the integer part of the result

// Divide and return the remainder (not modulo, because the result
may be negative)

** Power (raise a number to a whole-number power)

Prefix - Negate the following term. Same as ‘0-term’

Prefix + Take following term as if it was ‘0+term’

Table 3. Logical Operators

Operator Operation Result

& AND Returns 1 if both are true.

| Inclusive OR Returns 1 if either is true.

&& Exclusive OR Returns 1 if either (but not both) is
true.

Prefix \ Logical NOT Negates. 1 becomes 0 and
vice-versa

Prefix ¬ Logical NOT Negates. 1 becomes 0 and
vice-versa

Note: The symbols \ and ¬ are synonymous. Either may be used as a not symbol. Usage
is a matter of availability or personal preference.

 Copyright IBM Corp. 1997 143

Table 4. Comparison Operators

Operator Operation

== True if terms are strictly equal (identical)

= True if the terms are equal (numerically or when padded)

\ = = True if the terms are NOT strictly equal

¬ = = True if the terms are NOT strictly equal

\ = Not equal (inverse of =)

¬ = Not equal (inverse of =)

> Greater than

< Less than

> > Strictly greater than

< < Strictly less than

> < Greater than or less than (same as not equal)

< > Less than or greater than (same as not equal)

> = Greater than or equal to

\ < Not less than

¬ < Not less than

> > = Strictly greater than or equal to

\ < < Strictly NOT less than

¬ < < Strictly NOT less than

< = Less than or equal to

\ > Not greater than

¬ > Not greater than

< < = Strictly less than or equal to

\ > > Strictly NOT greater than

¬ > > Strictly NOT greater than

Note: The symbols \ and ¬ are synonymous. Either may be used as a not symbol. Usage
is a matter of availability or personal preference.

144 REXX/400 Programmer’s Guide V4R1

Order of Operations

Table 5. Precedence

Operation Operators Precedence

Prefix Operations Prefix - 1

Prefix +

Prefix \

Prefix ¬

Exponentiation * * 2

Multiplication and Division *, /, %, // 3

Addition and Subtraction +, - 4

Concatenation (with or
without blanks)

" ", || 5

Comparison Operations = > < 6

== >> <<

\= ¬=

> < < >

\> ¬>

\< ¬<

\== ¬==

\>> ¬>>

\<< ¬<<

>= >>=

<= <<=

Logical And & 7

Logical Or | && 8

Note: Expression evaluation is controlled by using parentheses, because expressions within
parentheses are evaluated first, and by operator precedence. See the REXX/400 Reference
for more information.

 Appendix D. Operators and Order of Operations 145

146 REXX/400 Programmer’s Guide V4R1

Appendix E. Sample REXX Programs

This appendix provides four longer sample REXX programs. These programs have
been used in other SAA environments and may provide you with some additional
insights about how REXX can be used.

REXXTRY: The REXXTRY program lets you sample what happens when you
enter various REXX instructions. This program can be used as a learning tool.

/\ REXXTRY: This program lets you interactively enter REXX \/

/\ instructions. If you run it with no parameter, or with a \/

/\ question mark for a parameter, it will briefly describe itself. \/

/\ This program uses meaningless variable names because the user \/

/\ may create or use variables with any name. The names used in \/

/\ this program are "unusual", so that there is not much chance that\/

/\ the user will change one. \/

Parse Source . . fnyx . /\ Get the name of the program. \/

Parse Arg fynz /\ Get the argument string. \/

If fynz='' | fynz='?' Then Do

Say fnyx 'allows you to interactively execute REXX instructions -'

Say 'each instruction string is executed when you press Enter.'

 End

If fynz='?' Then Do

Say 'You may also specify a REXX statement directly on the call for'

Say 'immediate execution.'

 Exit

 End

/\ A border of periods is written out after each of the user's \/

/\ instructions. The string of periods is created here. \/

 fzzs=copies('.',6ð)

 If fynz¬=''

/\ If an instruction was given as a parameter, it will be pushed \/

/\ into the REXX queue. \/

Then Push fynz

 Else Do

/\ No parameter was given, so the program prompts the user to \/

/\ enter instructions. \/

Say 'Go on - try a few...'

 Say

Say 'To end enter "EXIT".'

 End

/\ The user can set the variable 'trace' to a trace value. \/

/\ That value will be used to trace each of the user's \/

/\ instructions but not for the rest of the program. \/

/\ The initial trace value is 'Off'. \/

 trace='Off'

/\ The main action of the program starts here. \/

top:

Signal On Syntax

 Copyright IBM Corp. 1997 147

Do iynz=1 /\ This is an infinite loop. \/

last=lynz /\ Available for user to retrieve.\/

Parse Pull lynz /\ Get a line of input. \/

 Select

 When lynz=''

Then Say fnyx': Enter EXIT to End.'

 Otherwise

/\ This section of the program handles one of the user's \/

/\ instructions. The variable rc is set so that a change \/

/\ can be noticed, and the user's trace setting is set. \/

/\ Then the user's instruction is Interpreted. \/

 rc='X'

Call setline; Trace (trace)

 Interpret lynz

 Trace 'Off'

/\ Now write out the border. If rc has changed, the new \/

/\ value is shown. \/

 If rc='X'

Then Say fzzs

Else Say overlay('Rc ='rc' ',fzzs)

End /\ select \/

If fynz ¬= '' & queued()=ð Then Exit /\ Single-line request.\/

End /\ iynz \/

/\ That ends the main program. \/

/\ This subroutine sets the variable traceline to the line number \/

/\ of the line the subroutine was called from. \/

Setline: traceline=sigl

 return result

/\ The syntax routine gets called if a syntax error occurs. \/

/\ It tells what the error was, and then uses SIGNAL to go back to \/

/\ the main program. Or it will EXIT if the program was being \/

/\ used to run just a single instruction as a parameter. \/

Syntax: Trace Off;

 Say

If sigl<=traceline Then /\ The syntax error was caused by a bad \/

/\ value in the trace variable. \/

 Do

Say 'Invalid trace argument, set to "All".'

 trace='All'

 Signal Top

 End

Say 'You had a Syntax error there (RC =' rc':' errortext(rc)')'

Say 'Try it again.'

If fynz¬='' Then Exit rc

Else Signal Top

/\ This subroutine is available for the user to test the CALL \/

/\ instruction with. \/

Testsub: Say 'In test subroutine'

 Say 'Returning...'

 return 1234

148 REXX/400 Programmer’s Guide V4R1

QT (Query Time): The QT (Query Time) program is a REXX classic.

/\ Displays time in real English, also chimes. \/

/\ Mike Cowlishaw, December 1979 - December 1982 \/

Do; Parse source EN .;arg arg deb; End

 if arg=?

then call tell

if arg='PUSH' then do

 stack=1

parse var deb arg deb

 end

 else stack=ð

 if arg='TEST'

 then c8=deb

 else do

if deb\='' then trace ?r

 c8=time()

 end

 ot='It''s'

 hr=substr(c8,1,2)+ð

 mn=substr(c8,4,2)

 sc=substr(c8,7,2)

h.1 = 'one' ; h.2 = 'two'; h.3 = 'three'; h.4 = 'four'

h.5 = 'five'; h.6 = 'six'; h.7 = 'seven'; h.8 = 'eight'

h.9 = 'nine'; h.1ð= 'ten'; h.11= 'eleven'; h.12= 'twelve'

if sc>29 then mn=mn+1 /\ Round up mins \/

if mn>32 then hr=hr+1 /\ something to.. \/

 mod=mn//5

 select

when mod=ð then nop /\ Exact \/

when mod=1 then ot=ot 'just gone'

when mod=2 then ot=ot 'just after'

when mod=3 then ot=ot 'nearly'

when mod=4 then ot=ot 'almost'

end /\ Select \/

mn=mn+2 /\ Round up \/

if hr//12=ð & mn//6ð<=4

then signal midnoon /\ Noon and midnight \/

mn=mn-(mn//5) /\ to nearest 5 mins \/

 if hr>12

then hr=hr-12 /\ Get rid of 24-hour clock \/

 else

if hr=ð then hr=12 /\ Cater for midnight \/

 select

when mn=ð then nop /\ Add O'clock later \/

when mn=6ð then mn=ð

when mn= 5 then ot=ot 'five past'

when mn=1ð then ot=ot 'ten past'

when mn=15 then ot=ot 'a quarter past'

 Appendix E. Sample REXX Programs 149

when mn=2ð then ot=ot 'twenty past'

when mn=25 then ot=ot 'twenty-five past'

when mn=3ð then ot=ot 'half past'

when mn=35 then ot=ot 'twenty-five to'

when mn=4ð then ot=ot 'twenty to'

when mn=45 then ot=ot 'a quarter to'

when mn=5ð then ot=ot 'ten to'

when mn=55 then ot=ot 'five to'

 end

 ot=ot h.hr

 if mn=ð

then ot=ot "o'clock"

 ot=ot'.'

if \stack then do

if mod=ð & mn//15=ð

then call chime

say; say ot; say

 end

else push ot

 exit

MIDNOON:

 if hr=12

then ot=ot 'Noon.'

else ot=ot 'Midnight.'

 if \stack

 then do

 hr=12

 if mn//6ð=2

 then do

 mn=ð

 call chime

 end

say; say ot; say

 end

else push ot

 exit

CHIME:

/\ Give chimes \/

 if mn//6ð=ð

 then do

 chime='Bong'

 num=hr

 end

else do /\ Quarter \/

 chime='Ding-Dong'

 num=mn%15

 end

say; say ot

 ot='('chime

 do num-1

 ot=ot||',' chime

 end

 ot=ot||'.)'

return /\ Chime \/

150 REXX/400 Programmer’s Guide V4R1

TELL:

 say

say en 'will query the time and display or return it in English.'

say 'Call without any parameter to display the time, or with "PUSH"'

say ' to push the time-string onto the Stack.'

say en 'will "chime" at the quarter-hours and on the hours, but the'

say ' chimes are not placed on the stack.'

say 'English (British) idioms are used in this program.'

 return

SAY: This program is a simple REXX example that evaluates the argument
passed to it and displays the result. This program displays this description if called
with a parameter of ‘?’ or ‘help’. If the expression is not a valid REXX expression,
this program will issue a message saying so. You can add REXX instructions to
the expression, by using a semicolon as a delimiter.

Parse Arg rest /\ Capture the argument (in mixed case).\/

/\ If the argument is ? or help (in upper or lower case),\/

/\ then display the prolog comment. \/

If rest=? | translate(rest)='HELP' Then

Do i = 1 Until Sourceline(i) = '\/'

 Say Sourceline(i)

 End

Else

 Do

Signal on Syntax /\ Catch not valid expressions.\/

Interpret 'I =' rest; /\ Evaluate the expression. \/

Say i /\ Display the result. \/

 End

Exit

Syntax:

 Say 'Sorry, that argument was not a valid REXX expression.'

 Say 'The error was:' Errortext(rc) /\ rc gets set to the error \/

 Exit /\ number. Errortext returns \/

/\ the error message for a \/

/\ given error number. \/

METRIC: This program converts metric measurements to imperial/US.

arg val unit

if val='' | val='?' then signal help

drop outmsg.

select

/\ Temperature \/

when unit='C' then do /\ Celsius to Fahrenheit \/

output = format(32 + (9 \ val / 5),,1)

outmsg.1 = val 'degrees Celsius equals' output 'Fahrenheit'

 end

when unit='F' then do /\ Fahrenheit to Celsius \/

output = format((5 \ (val - 32) / 9),,1)

outmsg.1 = val 'degrees Fahrenheit equals' output 'Celsius'

 end

 Appendix E. Sample REXX Programs 151

/\ Weight \/

when unit='TON' then do /\ Tons to Metric tons and vice versa \/

x = 453.59237

/\ Imperial to metric \/

tonne = val \ 224ð \ x / 1ðððððð

outmsg.1 = val 'imperial tons equals' format(tonne,,3) 'metric tonnes'

tonne = val \ 2ððð \ x / 1ðððððð

outmsg.2 = val 'short tons equals' format(tonne,,3) 'metric tonnes'

/\ Metric to imperial \/

tons = val / (x \ 224ð / 1ðððððð)

outmsg.3 = val 'metric tonnes equals' format(tons,,3) 'imperial tons'

tons = val / (x \ 2ððð / 1ðððððð)

outmsg.4 = val 'metric tonnes equals' format(tons,,3) 'short tons'

 end

when unit='CWT' then do /\ Hundredweights to Kg \/

x = 453.59237

kg = val \ 112 \ x / 1ððð

outmsg.1 = val 'hundredweight equals' format(kg,,3) 'Kg'

 end

when unit='LB' then do /\ Pounds to Kg \/

output = format((val \ ð.45359237),,2)

outmsg.1 = val 'pounds equals' output 'Kg'

 end

when unit='OZ' then do /\ Ounces to gm \/

output = format((val /16 \ 453.59237),,2)

outmsg.1 = val 'ounces equals' output 'gm'

 end

when unit='KG' then do /\ Kilograms to pounds and ounces \/

x = ð.45359237

oz = 16 \ val / x

lbs = oz % 16

oz = format((oz // 16),,1)

outmsg.1 = val 'Kg equals' lbs 'lb' oz 'oz'

 end

when unit='GM' then do /\ Grams to (pounds and) ounces \/

x = 453.59237

oz = 16 \ val / x

if oz<16 then

outmsg.1 = val 'grams equals' format(oz,,2) 'ounces'

 else do

lbs = oz % 16

oz = format((oz // 16),,1)

outmsg.1 = val 'grams equals' lbs 'lb' oz 'oz'

 end

 end

/\ Length \/

when unit='M' then do /\ Metres to Yards and Miles to Km \/

/\ Metres to Yards, Feet, and Inches \/

in = val / .ð254

ft = in % 12

in = format((in // 12),,1)

yd = ft % 3

ft = ft // 3

outmsg.1 = val 'metres equals' yd 'yards,' ft 'feet,' in 'inches'

/\ Miles to Km \/

152 REXX/400 Programmer’s Guide V4R1

outmsg.2 = val 'miles equals' format((val \ 6336ð \ ð.ðððð254),,3) 'Km'

 end

when unit='KM' then do /\ Km to miles \/

outmsg.1 = val 'Km equals' format((val / (6336ð \ ð.ðððð254)),,2) 'miles'

 end

when unit='YD' then do /\ Yards to metres \/

outmsg.1 = val 'yards equals' format((val\36\ð.ð254),,3) 'metres'

 end

when unit='FT' then do /\ Feet to metres \/

outmsg.1 = val 'feet equals' format((val\12\ð.ð254),,3) 'metres'

 end

when unit='IN' then do /\ Inches to centimetres \/

outmsg.1 = val 'inches equals' format((val\2.54),,3) 'centimetres'

 end

when unit='CM' then do /\ Centimetres to (feet and) inches \/

in = val/2.54

if in<12 then

outmsg.1 = val 'centimetres equals' format(in,,2) 'inches'

 else do

ft = in % 12

in = in // 12

outmsg.1 = val 'centimetres equals' ft 'feet,' format(in,,2) 'inches'

 end

 end

when unit='MM' then do /\ Millimetres to (feet and) inches \/

in = val/25.4

if in<12 then

outmsg.1 = val 'millimetres equals' format(in,,2) 'inches'

 else do

ft = in % 12

in = in // 12

outmsg.1 = val 'millimetres equals' ft 'feet,' format(in,,2) 'inches'

 end

 end

/\ Petrol consumption \/

when unit="MPG" then do /\ MPG to km/l and l/1ððkm \/

x = 6336ð \ ð.ðððð254

y = val \ x / 4.5461 /\ Imperial gallon \/

outmsg.1 = val 'mpg (Imperial) equals' format(y,,1) 'km/litre,',

format(1ðð/y,,1) 'litres per 1ðð km'

outmsg.2 = ' '

y = val \ x / 3.7853 /\ US gallon \/

outmsg.3 = val 'mpg (USA) equals' format(y,,1) 'km/litre,',

format(1ðð/y,,1) 'litres per 1ðð km'

 end

when unit="KM/L" then do /\ Km/litre to mpg \/

x = 6336ð \ ð.ðððð254

y = val / x \ 4.5461 /\ Imperial gallon \/

z = val / x \ 3.7853 /\ US gallon \/

outmsg.1 = val 'km/litre equals' format(y,,1) 'mpg (Imperial),',

format(z,,1) 'mpg (USA).'

 end

when unit="L/1ððKM" then do /\ Litres/1ðð km to mpg \/

x = 6336ð \ ð.ðððð254

y = (1ðð / x) / (val / 4.5461)

z = (1ðð / x) / (val / 3.7853)

outmsg.1 = val 'litres/1ðð km equals' format(y,,1) 'mpg (Imperial),',

 Appendix E. Sample REXX Programs 153

format(z,,1) 'mpg (USA)'

 end

/\ Area \/

when unit='SQ.YD' then do /\ Square yards to square metres \/

x = (.ð254 \ 36) \\ 2

sqm = val \ x

outmsg.1 = val 'square yards equals' format(sqm,,3) 'square metres'

 end

when unit='SQ.FT' then do /\ Square feet to square metres \/

x = (.ð254 \ 12) \\ 2

sqm = val \ x

outmsg.1 = val 'square feet equals' format(sqm,,3) 'square metres'

 end

when unit='SQ.M' then do /\ Square metres AND square miles \/

/\ From square metres \/

x = (.ð254 \ 36) \\ 2

sqyd = format((val / x),,2)

x = (.ð254 \ 12) \\ 2

sqft = format((val / x),,2)

outmsg.1 = val 'square metres equals' sqyd 'square yards,' sqft 'square feet'

/\ From square miles \/

x = (6336ð \ ð.ðððð254) \\ 2

sqkm = val \ x

outmsg.2 = val 'square miles equals' format(sqkm,,3) 'square kilometres'

 end

when unit='SQ.KM' then do /\ Square kilometres to square miles \/

x = (6336ð \ ð.ðððð254) \\ 2

sqm = val / x

outmsg.1 = val 'square kilometres equals' format(sqm,,3) 'square miles'

 end

when unit='H' then do /\ Hectares to acres \/

x = (.ð254 \ 36) \\ 2

acre = val \ 1ðððð / (484ð \ x)

outmsg.1 = val 'hectares equals' format(acre,,2) 'acres'

 end

when unit='ACRE' then do /\ Acres to hectares \/

x = (.ð254 \ 36) \\ 2

sqm = val \ x \ 484ð

hec = sqm / 1ðððð

sqm = format(sqm,,ð)

hec = format(hec,,3)

outmsg.1 = val 'acres equals' sqm 'square meters, or' hec 'hectares'

 end

/\ Volume \/

when unit='L' then do /\ Litres to appropriate measure \/

impg = val / 4.5461 /\ Imperial gallons \/

usg = val / 3.7853 /\ US gallons \/

if impg >= 1 then /\ Not less than 1 Imperial gallon \/

outmsg.1 = val 'litres equals' format(impg,,1) 'Imperial gallons.'

else outmsg.1 = val 'litres equals' format(impg\8,,1) 'Imperial pints.'

outmsg.2 = ' '

if usg >= 1 then /\ Not less than 1 US gallon \/

outmsg.3 = val 'litres equals' format(usg,,1) 'US gallons.'

else outmsg.3 = val 'litres equals' format(usg\8,,1) 'US pints.'

154 REXX/400 Programmer’s Guide V4R1

 end

when unit='G' then do /\ Gallons to litres \/

impg = val \ 4.5461 /\ Imperial gallons \/

usg = val \ 3.7853 /\ US gallons \/

outmsg.1 = val 'Imperial gallons equals' format(impg,,3) 'litres,',

val 'US gallons equals' format(usg,,3) 'liters.'

 end

when unit='P' then do /\ Pints to litres \/

impg = val / 8 \ 4.5461 /\ Imperial gallons \/

usg = val / 8 \ 3.7853 /\ US gallons \/

outmsg.1 = val 'Imperial pints equals' format(impg,,3) 'litres,',

val 'US pints equals' format(usg,,3) 'liters.'

 end

when unit="CU.IN" then do /\ Cubic inches to cc/litres \/

output = val \ (2.54\\3) /\ cc \/

if output < 1ððð then

outmsg.1 = val 'cu.in equals' format(output,,ð) 'cc'

 else

outmsg.1 = val 'cu.in equals' format(output/1ððð,,3) 'litres'

 end

when unit="CU.YD" then do /\ Cubic yards to cubic metres \/

output = format(val\ð.7646,,3)

outmsg.1 = val 'cubic yards equals' output 'cubic metres'

 end

when unit="M3" then do /\ Cubic metres to cubic yards \/

output = format(val\1.3ð8ð,,3)

outmsg.1 = val 'cubic metres equals' output 'cubic yards'

 end

/\ Explain: \/

otherwise do

say 'Unit of measure' unit 'not supported.'

say

help:

say 'Format: METRIC value unit'

say " E.g. STRREXPRC METRIC PARM('1ð G') to convert 1ð gallons to litres."

say

say "Calculations are made using precise conversion factors,"

say "but are rounded to a sensible number of decimal places."

say

say "Units of measure that are supported are:"

say

say " C Celsius to Fahrenheit"

say " F Fahrenheit to Celsius"

say " TON Tons to Metric tons and vice versa"

say " CWT Hundredweights to Kg"

say " LB Pounds to Kg"

say " OZ Ounces to gm"

say " KG Kilograms to pounds and ounces"

say " GM Grams to (pounds and) ounces"

say " M Metres to Yards and Miles to Km"

say " KM Km to miles"

say " YD Yards to metres"

say " FT Feet to metres"

say " IN Inches to centimetres"

say " CM Centimetres to (feet and) inches"

say " MM Millimetres to (feet and) inches"

say " MPG MPG to km/l and l/1ððkm"

 Appendix E. Sample REXX Programs 155

say " KM/L Km/litre to mpg"

say " L/1ððKM ... Litres/1ðð km to mpg"

say " SQ.YD Square yards to square metres"

say " SQ.FT Square feet to square metres"

say " SQ.M Square metres AND square miles"

say " SQ.KM Square kilometres to square miles"

say " H Hectares to acres"

say " ACRE Acres to hectares"

say " L Litres to appropriate measure"

say " G Gallons to litres"

say " P Pints to litres"

say " CU.IN Cubic inches to cc or litres"

say " CU.YD Cubic yards to cubic metres"

say " M3 Cubic metres to cubic yards"

 exit

 end

end

do i=1 to 3

if outmsg.i='OUTMSG.'i then leave i

 say outmsg.i

 end

156 REXX/400 Programmer’s Guide V4R1

Appendix F. Sample REXX Programs for the AS/400 System

This appendix contains some examples of REXX programs which can be used on
the AS/400 system.

Example 1: The P2D function converts a string containing packed numeric data
into an unpacked string.

/\\\/

/\ \/

/\ P2D - Converts a string containing packed numeric data \/

/\ into a string of the same value in an UNPACKED format. \/

/\ \/

/\ Input - string containing valid PACKED numeric data \/

/\ decimal positions to adjust decimal point in UNPACKED \/

/\ string. \/

/\ \/

/\ Returns - string containing UNPACKED value of input string. \/

/\ \/

/\\\/

parse arg pack_str , dec_place

unpack_str=C2X(pack_str)

dec_str=left(unpack_str,length(unpack_str)-1)

if datatype(dec_place)=='NUM' then

 do

if dec_place > length(dec_str) then

 do

say 'Invalid decimal Place'

exit /\ Exit with no data gets error 44 in caller \/

 end

 dec_str=insert('.',dec_str,length(dec_str)-dec_place)

 end

if pos(right(unpack_str,1),'BDE') > ð then

 dec_str=-dec_str

exit dec_str

Example 2: The D2P function converts a numeric string to packed format.

/\\\/

/\ \/

/\ D2P - Converts a string containing numeric data into a \/

/\ string containing the same value in PACKED format. \/

/\ \/

/\ Input - string containing valid numeric data \/

/\ decimal positions (for validation purposes) \/

/\ \/

/\ Returns - string containing packed value of input string \/

/\ \/

/\\\/

parse arg unpack_str , dec_place .

if datatype(unpack_str)¬='NUM' then

 do

say 'Invalid input string, it must be a decimal string'

 exit /\ Exit with no data to force syntax error 44 in caller \/

 end

 Copyright IBM Corp. 1997 157

/\ Delete decimal point.\/

if pos('.',unpack_str) ¬= ð then

 do

if dec_place ¬= pos('.',unpack_str) then

 do

say 'Decimal position passed to this routine does not match the',

'decimal number passed'

say 'Conversion will continue'

 end

 unpack_str=delstr(unpack_str,pos('.',unpack_str),1)

 end

/\ Check for negative number, if so remove it.\/

if substr(unpack_str,1,1) = '-' then

 do

 minusflag=yes

 unpack_str=right(unpack_str,length(unpack_str)-1)

 end

else /\ Check for PLUS sign, if so remove it.\/

if substr(unpack_str,1,1) = '+' then

 unpack_str=right(unpack_str,length(unpack_str)-1)

/\ If the length of the number is even, insert a ð in front.\/

if length(unpack_str)//2=ð then

 unpack_str=insert('ð',unpack_str,ð)

/\ Also need to add a ð to the end to convert to the sign.\/

unpack_str=insert('ð',unpack_str,length(unpack_str))

/\ Convert to character.\/

pack_str=X2C(unpack_str)

last_byte=substr(pack_str,length(pack_str))

if minusflag=yes then

 or_str=substr(pack_str,1,length(pack_str)-1)||bitxor(last_byte,'ðD'x)

else

 or_str=substr(pack_str,1,length(pack_str)-1)||bitxor(last_byte,'ðF'x)

exit bitor(pack_str,or_str)

Example 3: The REXX program, which is the CPP for the following command,
copies a file member to the REXX external data queue.

CMD PROMPT('Copy file to REXX data queue')

PARM KWD(FROMFILE) TYPE(QUAL1) MIN(1) PROMPT('From +

 file')

PARM KWD(MBR) TYPE(\NAME) LEN(1ð) MIN(1) +

 PROMPT('Member')

PARM KWD(NMBRCDS) TYPE(\DEC) LEN(6) DFT(\ALL) +

SPCVAL((\ALL 999999)) PROMPT('Number of +

records to copy')

 QUAL1: QUAL TYPE(\NAME) LEN(1ð) MIN(1)

QUAL TYPE(\NAME) LEN(1ð) DFT(\LIBL) +

SPCVAL((\CURLIB) (\LIBL)) PROMPT('Library')

158 REXX/400 Programmer’s Guide V4R1

/\\\/

/\ Command Processing REXX procedure for CPYFTOREXQ command. \/

/\ This program reads the contents of a file member and \/

/\ places it, line by line, on the REXX External Data Queue. \/

/\ \/

/\ This example assumes the existence of a command called \/

/\ CPYFTOREXQ. This is not an IBM-supplied command, but there \/

/\ are several approaches you could use to write a program which \/

/\ would read a file and push the lines read into the REXX queue. \/

/\ You could then create your own CPYFTOREXQ command based on your \/

/\ program. For examples of this type of program, see Appendix H. \/

/\ \/

/\ Parameters passed: \/

/\ \/

/\ From file name - lib - Library that contains file \/

/\ - file - File that contains member \/

/\ \/

/\ Member name - mbr - Member to be copied into queue \/

/\ \/

/\ Number of records - count - Number of records to be read \/

/\ from file \/

/\ \ALL - Read all records \/

/\ \/

/\ Returns: 'ð' SUCCESS \/

/\ '1' FAIL \/

/\ \/

/\\\/

/\ Parse out the library and file \/

PARSE UPPER ARG 'FROMFILE(' lib '/' file ')'

/\ Parse out the member \/

PARSE UPPER ARG 'MBR(' mbr ')'

/\ Parse out the number of records to copy \/

PARSE UPPER ARG 'NMBRCDS(' count ')'

/\ Check if file and member exist \/

'CHKOBJ OBJ('lib'/'file') OBJTYPE(\FILE) MBR('mbr')'

IF rc ¬= 'ð' THEN DO

/\ Save the return code \/

save_rc = rc

/\ If there was a problem, let the user know and exit. \/

IF POS(rc,'CPF98ð1 CPF981ð CPF9815') ¬= ð THEN DO

msg = 'File' lib'/'file', member' mbr 'was not found.'

 'SNDPGMMSG MSG(&msg)'

 END

 ELSE DO

msg = 'Unknown error' save_rc 'occurred during CHKOBJ processing.'

 'SNDPGMMSG MSG(&msg)'

 END

 EXIT 1

END

IF count = '\ALL' THEN count = '999999'

 Appendix F. Sample REXX Programs for the AS/400 System 159

/\ Override STDIN to the LIB/FILE parms. \/

'OVRDBF FILE(STDIN) TOFILE('lib'/'file') MBR('mbr')'

DO count

/\ read data from STDIN stream \/

PARSE LINEIN data

/\ If the data read is strictly equal to a null string, \/

/\ then we have reached the end of the file, so get out \/

/\ of this loop. \/

IF data == '' THEN LEAVE

/\ Put data into REXX queue (FIFO order for PULL) \/

 QUEUE data

END

EXIT

PGM PARM(&FILE_LIB &MBR &RECS)

DCL VAR(&FILE_LIB) TYPE(\CHAR) LEN(2ð)

DCL VAR(&FILE) TYPE(\CHAR) LEN(1ð)

DCL VAR(&LIB) TYPE(\CHAR) LEN(1ð)

DCL VAR(&MBR) TYPE(\CHAR) LEN(1ð)

DCL VAR(&RECS) TYPE(\DEC) LEN(6)

DCL VAR(&RECSA) TYPE(\CHAR) LEN(6)

DCL VAR(&REXXPARM) TYPE(\CHAR) LEN(256)

CHGVAR &FILE %SST(&FILE_LIB 1 1ð)

CHGVAR &LIB %SST(&FILE_LIB 11 1ð)

CHGVAR &RECSA &RECS

OVRDBF FILE(STDIN) TOFILE(&LIB/&FILE) MBR(&MBR)

CHGVAR &REXXPARM VALUE('CPYFTOREXQ FROMFILE(' \TCAT +

&LIB \TCAT '/' \TCAT &FILE +

\TCAT ') NMBRCDS(' \TCAT +

&RECSA \TCAT ') MBR(' \TCAT +

&MBR \TCAT ')')

/\ Substitute your own library name for EXAMPLES in the \/

/\ next statement. EXAMPLES is the name of the library \/

/\ that contains the previous REXX program. \/

 STRREXPRC SRCMBR(CPYFTOREXQ) SRCFILE(EXAMPLES/QREXSRC) +

 PARM(&REXXPARM)

ENDPGM

160 REXX/400 Programmer’s Guide V4R1

Example 4: The REXX program, which is the CPP for the following command,
displays a profile of the contents of a library.

CMD PROMPT('Display Library Profile')

PARM KWD(LIBRARY) TYPE(\NAME) LEN(1ð) MIN(1) +

 PROMPT('Library')

PARM KWD(FORMAT) TYPE(\CHAR) LEN(8) RSTD(\YES) +

DFT(\SUMMARY) VALUES(\DETAIL \SUMMARY) +

MIN(ð) PROMPT('Output format')

PARM KWD(OUTPUT) TYPE(\CHAR) LEN(6) RSTD(\YES) +

DFT(\PRINT) VALUES(\ \PRINT) +

 PROMPT('Output Type')

/\\\/

/\ REXX program to DISPLAY a profile of the contents of a Library. \/

/\ \/

/\ Parameters passed: \/

/\ \/

/\ Library - Libname - Library name to search. \/

/\ \/

/\ Output format - \SUMMARY - Summarize output by object type.\/

/\ \DETAIL - Produce detail output. \/

/\ \/

/\ Output type - \PRINT - Output to a listing. \/

/\ - \ - Output to Display \/

/\ \/

/\ Returns: 'ð' SUCCESS \/

/\ '1' FAIL \/

/\ \/

/\\\/

 SIGNAL on NOVALUE

 /\ Setup ERROR,FAILURE & SYNTAX condition traps.\/

 SIGNAL ON SYNTAX

 /\ Parse out the library value using the CDO "LIBRARY" keyword.\/

 PARSE ARG 'LIBRARY(' library ')'

 /\ Parse out the output_format using the CDO "FORMAT" keyword.\/

 PARSE ARG 'FORMAT(' output_format ')'

 /\ Parse out the output_type using the CDO "OUTPUT" keyword.\/

 PARSE ARG 'OUTPUT(' output_type ')'

 /\ Does the library specified exist ? \/

 'CHKOBJ OBJ(QSYS/'library') OBJTYPE(\LIB)'

 IF POS('CPF98',rc) ¬= ð THEN DO

'SNDPGMMSG MSG(Library:'library 'not found)'

 EXIT(rc)

 END

 /\ Set ERROR & FAILURE condition traps.\/

 CALL ON ERROR name COMMAND_ERROR_TRAP

 CALL ON FAILURE name command_error_trap

 /\ Create temporary work file containing objects in library.\/

 'DSPOBJD OBJ('library'/\ALL) OBJTYPE(\ALL) ',

 Appendix F. Sample REXX Programs for the AS/400 System 161

'DETAIL(\FULL) OUTPUT(\OUTFILE) ',

 'OUTFILE(QTEMP/OBJD)'

 /\ Setup SHARE(\YES) for OPNQRYF.\/

 'OVRDBF FILE(OBJD) TOFILE(QTEMP/OBJD) SHARE(\YES) SEQONLY(\NO)'

 /\ Create ODP for work file containing records to be read.\/

 IF output_format = '\SUMMARY' THEN

/\ Sort by object type & object attribute.\/

'OPNQRYF FILE((QTEMP/OBJD)) KEYFLD((ODOBTP) (ODOBAT))'

 ELSE

/\ Sort by object name.\/

'OPNQRYF FILE((QTEMP/OBJD)) KEYFLD((ODOBNM))'

 X = QUEUED() /\ Save in X the number of entries in REXX QUEUE\/

/\ prior to CPYFTOREXQ command. \/

 'ADDREXBUF'

 /\ Copy all records from the DSPOBJD outfile to the REXX QUEUE. \/

 /\ Use CPYFTOREXQ (Appendix example). \/

 'CPYFTOREXQ FROMFILE(QTEMP/OBJD) NMBRCDS(\ALL) MBR(OBJD)'

 /\ Close the ODP after records are copied to REXX QUEUE. \/

 'CLOF OBJD'

 /\ Select output device - display (default) printer. \/

 /\ Override output to spooled file & specify other attributes. \/

 IF output_type = '\PRINT' THEN DO

'OVRPRTF FILE(STDOUT) TOFILE(QSYSPRT) '

 END

 /\ Initialize work values.\/

 y=''

 count = ð

 detail_line = '' COPIES(' ',8ð)

 prev_odobtp = ''; prev_odobat = ' ';

 total_objects = 'ð'

 total_size = 'ð'

 total_count = 'ð'

 total_odobsz ='ð'

 page_rec_count = 'ð'

 pagenum = 'ð'

 total_count = 'ð'

 count = QUEUED() - X

 DO i=1 TO count

/\ Do not PULL entries that were already on REXX QUEUE.\/

 /\ Parse out the record from the QUEUE into the following template. \/

/\ From Name Length Description \/

PARSE PULL . , /\ Place holder \/

24 odobnm +1ð , /\ Object name \/

34 odobtp +8 , /\ Object type \/

42 odobat +1ð , /\ Object attribute \/

53 odobsz +6 , /\ Object size (packed) \/

59 odobtx +5ð , /\ Object text \/

. , /\ Place holder \/

162 REXX/400 Programmer’s Guide V4R1

/\ Use P2D (Appendix example) to: unpack object size. \/

odobsz = P2D(odobsz,ð)

IF output_format = '\SUMMARY' THEN DO

 CALL summary_output

 END

 ELSE DO

 CALL detail_output

 END

 END

 'RMVREXBUF'

 EXIT(ð)

/\\\/

/\ summary_output : Internal Routine to Produce summary output \/

/\\\/

summary_output:

/\ Print header for 1st page.\/

IF i = 1 THEN DO

pagenum = 1

 CALL write_summary_header

 END

/\ If change in control fields then display line & \/

 /\ accumulate totals \/

IF (odobtp ¬= prev_odobtp | odobat ¬= prev_odobat) THEN DO

IF i ¬= 1 THEN DO

type = prev_odobtp

attr = prev_odobat

 CALL write_summary_line

total_objects = total_objects + total_count

 total_size = total_size + total_odobsz

total_odobsz = ð

 total_count = ð

 END

prev_odobtp = odobtp

prev_odobat = odobat

 END

total_odobsz = odobsz + total_odobsz

total_count = total_count + 1

/\ If last record being processed, then display total.\/

 IF i = count THEN DO

IF total_count > ð THEN DO

type = odobtp

attr = odobat

 CALL write_summary_line

total_objects = total_objects + total_count

 total_size = total_size + total_odobsz

 END

 CALL write_summary_total

 END

RETURN

 Appendix F. Sample REXX Programs for the AS/400 System 163

/\\\/

/\ write_summary_header: Write a summary header output lines \/

/\\\/

write_summary_header:

SAY,

' Display Library Profile Page 'pagenum

SAY,

' Object Type attr # of objects Total Size '

SAY,

' ___________ ______ ___________ ___________ '

RETURN

/\\\/

/\ write_line: Write a summary output line \/

/\\\/

write_summary_line:

line = ''

line=INSERT(type,line,7,1ð)

line=INSERT(attr,line,21,5)

line=INSERT(total_count,line,29,1ð)

line=INSERT(total_odobsz,line,43,1ð)

line=strip(line,'t')

call check_overflow

SAY line

RETURN

/\\\/

/\ write_summary_total: Write a summary total line \/

/\\\/

write_summary_total:

line = ''

line=INSERT(total_objects,line,29,1ð)

line=INSERT(total_size,line,43,1ð)

line=strip(line,'t')

call check_overflow

SAY,

' Totals --> =========== =========== '

call check_overflow

SAY line

RETURN

/\\\/

/\ check_overflow: Check for page overflow, if so output header \/

/\\\/

check_overflow:

/\ If page overflow, then perform header output. \/

IF page_rec_count > 24 THEN DO

page_rec_count = ð

pagenum = pagenum + 1

IF output_format = '\SUMMARY' THEN

 CALL write_summary_header

ELSE CALL write_detail_header

END

ELSE page_rec_count = page_rec_count + 1

RETURN

164 REXX/400 Programmer’s Guide V4R1

/\\\/

/\ detail_output : Internal Routine to produce detail output \/

/\\\/

detail_output:

/\ Print header for 1st page.\/

IF i = 1 THEN DO

pagenum = 1

 CALL write_detail_header

 END

/\ If change in control fields, then display line \/

/\ and accumulate totals. \/

total_odobsz = odobsz + total_odobsz

total_count = total_count + 1

 CALL write_detail_line

/\ If last record being processed, then display total.\/

 IF i = count THEN DO

 CALL write_detail_total

 END

RETURN

/\\\/

/\ write_detail_header: Write a detail header output line \/

/\\\/

write_detail_header:

SAY,

' Display Library Profile Page 'pagenum

SAY,

' Object name Object Type attr. size Short description '

SAY,

' ___________ ___________ _____ _________ _________________________'

RETURN

/\\\/

/\ write_detail_line: Write a detail output line \/

/\\\/

write_detail_line:

line = ''

line=INSERT(odobnm,detail_line,3,1ð)

line=INSERT(odobtp,line,15,1ð)

line=INSERT(odobat,line,28,5)

line=INSERT(format(odobsz,1ð),line,32,1ð)

line=INSERT(odobtx,line,45,25)

line=strip(line,'t')

call check_overflow

SAY line

RETURN

/\\\/

/\ write_detail_total : Write a detail total line \/

/\\\/

write_detail_total:

line = ''

 Appendix F. Sample REXX Programs for the AS/400 System 165

line=INSERT(format(total_odobsz,1ð),line,32,1ð)

call check_overflow

SAY,

' Total size(bytes) --> ========= '

line=strip(line,'t')

SAY line

RETURN

/\\\/

/\ command_error_trap: ERROR & FAILURE condition trap (routine) \/

/\\\/

COMMAND_ERROR_TRAP:

OK_exceptions = ''

IF POS(rc,OK_exceptions) = ð THEN DO

PARSE SOURCE . . lib srcfile srcmbr

SAY 'REXX program:'lib'/'srcfile srcmbr 'detected exception'

SAY 'The line number is:'sigl

SAY 'The exception id is:'rc

SAY 'The command that caused the error is:'

 SAY SOURCELINE(sigl)

EXIT(1) /\ Exit the REXX program. \/

END

/\\\/

/\ SYNTAX: Syntax condition trap (branch point) \/

/\\\/

SYNTAX:

PARSE SOURCE . . lib srcfile srcmbr

SAY 'REXX program:'lib'/'srcfile srcmbr 'trapped a SYNTAX error'

SAY 'The line number is:'sigl

SAY 'The failing REXX statement is:'

SAY SOURCELINE(sigl)

SAY 'The error code is'rc '. The description of the error is:'

SAY ERRORTEXT(rc)

EXIT(1) /\ Exit the REXX program. \/

/\\\/

/\ NOVALUE: Trap references to uninitialized rexx variables \/

/\\\/

NOVALUE:

PARSE SOURCE . . lib srcfile srcmbr

SAY 'REXX program:'lib'/'srcfile srcmbr 'trapped a NOVALUE condition'

SAY 'The line number is:'sigl

SAY 'The REXX clause statement is:'

SAY SOURCELINE(sigl)

EXIT(1) /\ Exit the REXX program. \/

166 REXX/400 Programmer’s Guide V4R1

Example 5: This example moves objects between libraries. It shows a
comprehensive way to perform error checking within a REXX program. It checks
for nonzero return codes and responds to them with an error checking internal
subroutine.

/\\\/

/\ This REXX program will move an Object from a Test library to a \/

/\ Production Library. \/

/\ \/

/\ Arguments passed: \/

/\ \/

/\ Object - Object name \/

/\ Objtype - Object type \/

/\ Operation - Function to perform 'C' Copy object to Production\/

/\ Library. \/

/\ 'R' Replace object in \/

/\ Production Library. \/

/\ \/

/\\\/

PARSE UPPER ARG object objtype oper

/\ Validate length and data type of file.\/

IF WORDLENGTH(file) >= 1ð | obj = '' | DATATYPE(obj,'A') = ð THEN DO

'SNDPGMMSG MSG('Please enter a valid file name')'

 exit

END

/\ Set validate object types list.\/

valid_objtype_list = '\DTAARA \DTAQ \FILE \JOBD \JOBQ \MENU \MSGF',

 '\MSGQ \PGMQ'

/\ Validate object types.\/

IF POS(objtype,valid_objtype_list) = ð THEN DO

msg = 'Object Type' objtype 'is not a supported type. Please supply',

'a valid type of:' valid_objtype_list

 'SNDPGMMSG MSG(&MSG) TOPGMQ(\PRV)'

 RETURN

END

/\ Set validate object types list.\/

valid_oper_list = 'M C MOVE COPY \MOVE \COPY'

IF POS(oper,valid_oper_list) = ð THEN DO

msg = 'Operation' oper 'is not a supported operation.Please supply',

'a valid operation code of:' valid_oper

 'SNDPGMMSG MSG(&MSG) TOPGMQ(\PRV)'

 RETURN

END

/\ Check for object existence. \/

'CHKOBJ TESTLIB/&object OBJTYPE(&objtype)'

IF rc¬='' THEN

 Appendix F. Sample REXX Programs for the AS/400 System 167

IF POS(rc,'CPF98ð1 CPF981ð') THEN DO

msg = 'Object:' object 'of type:' objtype 'does not exist in',

 'TESTLIB'

 'SNDPGMMSG MSG(&MSG) TOPGMQ(\PRV)'

 RETURN

 END

SELECT

/\ Copy the object into the Production library. \/

WHEN POS(oper,'C COPY \COPY') ¬= ð THEN DO

/\ Does the object already exists in the library? \/

'CHKOBJ PRODLIB/&object OBJTYPE(&objtype)'

IF rc ='' THEN DO

msg = 'Object:' object 'of type:' objtype 'already exists in',

'TESTLIB ... Please delete object or specify MOVE option'

 'SNDPGMMSG MSG(&MSG) TOPGMQ(\PRV)'

CALL ON ERROR name error_handler

/\ Move the object from TEST lib to PROD lib. \/

'MOVOBJ OBJ(TESTLIB/&object) OBJTYPE(&objtype) TOLIB(PRODLIB)'

CALL OFF ERROR

 RETURN

 END

 END

/\ Move the object into the Production library. \/

WHEN POS(oper,'M MOVE \MOVE') ¬= ð THEN DO

/\ Does the object already exist in the library? \/

'CHKOBJ PRODLIB/&object OBJTYPE(&objtype)'

/\ If so \/

IF rc ='' THEN DO

/\ Call routine to delete the object. \/

CALL dltobj_routine object, objtype

IF result = '' THEN DO

CALL ON ERROR name error_handler

/\ Move the object from TEST lib to PROD lib. \/

'MOVOBJ OBJ(TESTLIB/&object) OBJTYPE(&objtype) TOLIB(PRODLIB)'

CALL OFF ERROR

 END

 ELSE DO

EXIT(result) /\Exit, returning exception id.\/

 END

 END

 END

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

/\ dltobj_routine - \/

/\ Internal REXX routine called \/

/\ to delete a specific object type \/

/\ from the PRODLIB. \/

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

168 REXX/400 Programmer’s Guide V4R1

dltobj_routine:

PARSE ARG object, objtype

SELECT /\ Select DLT command based on object being deleted.\/

WHEN objtype = '\FILE' THEN dlt_noun = 'FILE'

WHEN objtype = '\DTAARA' THEN dlt_noun = 'DTAARA'

WHEN objtype = '\DTAQ' THEN dlt_noun = 'DTAQ'

WHEN objtype = '\JOBD' THEN dlt_noun = 'JOBD'

WHEN objtype = '\JOBQ' THEN dlt_noun = 'JOBQ'

WHEN objtype = '\MENU' THEN dlt_noun = 'MENU'

WHEN objtype = '\MSGF' THEN dlt_noun = 'MSGF'

WHEN objtype = '\MSGQ' THEN dlt_noun = 'MSGQ'

WHEN objtype = '\PGM' THEN dlt_noun = 'PGM'

 OTHERWISE

 DLTCMD = 'DLT'dlt_noun /\ Concat DLT and dlt_noun into 1 word.\/

 DLTCMD 'PRODLIB/&object' /\ Issue COMMAND with var DLTCMD. \/

 IF rc ¬= '' THEN DO

msg = 'Unexpected error:'rc 'encountered while issuing:' DLTCMD,

'Please see Joblog for details'

 'SNDPGMMSG MSG(&MSG) TOPGMQ(\PRV)'

RETURN(rc) /\ Return to caller with exception id.\/

 END

 RETURN

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

/\ error_handler - \/

/\ REXX ERROR condition handler \/

/\ routine 'SET' to handler ERRORS \/

/\ occurring from a MOVOBJ command. \/

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

error_handler:

msg = 'Error encountered during MOVOBJ command for object:'object,

' From TESTLIB to PRODLIB. Please see joblog for details'

 'SNDPGMMSG MSG(&MSG) TOPGMQ(\PRV)'

RETURN

 Appendix F. Sample REXX Programs for the AS/400 System 169

Example 6: This programs determines if a job is active.

/\\\/

/\ REXX program to determine if a Job is active. \/

/\ \/

/\ Parameters: Job name \/

/\ Job number \/

/\ User \/

/\ \/

/\ Returns: "1" active , "ð" NOT active \/

/\ \/

/\\\/

PARSE ARG job_name user job_number

/\ Add a Buffer to the REXX data queue.\/

 buffer = ð

'ADDREXBUF BUFFER(&buffer)'

/\ Create active job listing. \/

'WRKACTJOB OUTPUT(\PRINT)'

/\ Create temporary work file to store spooled file output (WRKACTJOB),\/

/\ if needed.\/

'CHKOBJ QTEMP/ACTJOBLST \FILE'

IF rc ¬= 'ð' THEN

'CRTPF QTEMP/ACTJOBLST RCDLEN(132)'

/\Copy the last spooled file from WRKACTJOB to the temporary work file.\/

'CPYSPLF FILE(QPDSPAJB) TOFILE(QTEMP/ACTJOBLST) SPLNBR(\LAST)'

/\Copy the WRKACTJOB output from QTEMP to the REXX queue.\/

'CPYFTOREXQ FROMFILE(QTEMP/ACTJOBLST) MBR(ACTJOBLST)'

DO QUEUED()

 PARSE PULL act_job_name act_user act_job_number rest

 /\ If active job is same as argument, then return 1.\/

 IF job_name = act_job_name & job_number = act_job_number & ,

user = act_user THEN DO

/\ Remove Buffer from the REXX data queue.\/

 'RMVREXBUF BUFFER(&buffer)'

 EXIT(1)

 END

END

/\ Remove Buffer from the REXX data queue.\/

'RMVREXBUF BUFFER(&buffer)'

/\ No active job found on queue.\/

EXIT(ð)

170 REXX/400 Programmer’s Guide V4R1

Example 7: This program moves an object from one library to another.

/\\\/

/\ This REXX program will move a Object from a Test library to a \/

/\ Production Library. \/

/\ \/

/\ Parameters: \/

/\ \/

/\ Object - Object name \/

/\ Objtype - Object type \/

/\ Operation - Function to perform 'C' Copy object to Production\/

/\ Library. \/

/\ 'R' Replace object in \/

/\ Production Library. \/

/\ \/

/\ Returns: 'ð' if operation successful \/

/\ '1' if operation NOT successful \/

/\ \/

/\ \/

/\ \/

/\\\/

PARSE UPPER ARG object objtype oper

/\ Set validate object types list.\/

valid_objtype_list = '\DTAARA \DTAQ \FILE \JOBD \JOBQ \MENU \MSGF',

 '\MSGQ \PGMQ'

/\ Validate object types.\/

IF POS(objtype,valid_objtype_list) = ð THEN DO

msg = 'Object Type' objtype 'is not a supported type. Please supply',

'a valid type of:' valid_objtype_list

 'SNDPGMMSG MSG(&MSG) TOPGMQ(\PRV)'

 EXIT(1)

END

/\ Set validate object types list.\/

valid_oper_list = 'M C MOVE COPY \MOVE \COPY'

IF POS(oper,valid_oper_list) = ð THEN DO

msg = 'Operation' oper 'is not a supported operation. Please supply',

'a valid operation code of:' valid_oper_list

 'SNDPGMMSG MSG(&MSG) TOPGMQ(\PRV)'

 EXIT(1)

END

/\ Check for object existence \/

'CHKOBJ TESTLIB/&object OBJTYPE(&objtype)'

IF rc¬= 'ð' THEN

IF POS(rc,'CPF98ð1 CPF981ð') ¬= ð THEN DO

msg = 'Object:' object 'of type:' objtype 'does not exist in',

 'TESTLIB'

 'SNDPGMMSG MSG(&MSG) TOPGMQ(\PRV)'

 EXIT(1)

 END

 Appendix F. Sample REXX Programs for the AS/400 System 171

SELECT

/\ Copy the object into the Production library. \/

WHEN POS(oper,'C COPY \COPY') ¬= ð THEN DO

/\ Does the object already exists in the library? \/

'CHKOBJ PRODLIB/&object OBJTYPE(&objtype)'

IF rc ='ð' THEN DO

msg = 'Object:' object 'of type:' objtype 'already exists in',

'TESTLIB ... Please delete object or specify MOVE option'

 'SNDPGMMSG MSG(&MSG) TOPGMQ(\PRV)'

 EXIT(1)

 END

 ELSE DO

/\ Set ERROR trap ON.\/

SIGNAL ON ERROR name error_handler

/\ Move the object from TEST lib to PROD lib. \/

'MOVOBJ OBJ(TESTLIB/&object) OBJTYPE(&objtype) TOLIB(PRODLIB)'

/\ Set ERROR trap OFF.\/

SIGNAL OFF ERROR

 EXIT(ð)

 END

 END

/\ Move the object into the Production library. \/

WHEN POS(oper,'M MOVE \MOVE') ¬= ð THEN DO

/\ Does the object already exists in the library? \/

'CHKOBJ PRODLIB/&object OBJTYPE(&objtype)'

/\ If so, \/

IF rc ='ð' THEN DO

/\ Call routine to delete the object. \/

CALL dltobj_routine object, objtype

 END

/\ Set ERROR trap ON.\/

SIGNAL ON ERROR name error_handler

/\ Move the object from TEST lib to PROD lib. \/

'MOVOBJ OBJ(TESTLIB/&object) OBJTYPE(&objtype) TOLIB(PRODLIB)'

/\ Set ERROR trap OFF.\/

SIGNAL OFF ERROR

 END

 OTHERWISE

END

EXIT(ð)

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

/\ dltobj_routine - \/

/\ Internal REXX routine called \/

/\ to delete a specific object type \/

/\ from the PRODLIB. \/

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

dltobj_routine:

PARSE ARG object, objtype

SELECT /\ Build DLT command based on object being deleted.\/

WHEN objtype = '\FILE' THEN dlt_noun = 'F'

172 REXX/400 Programmer’s Guide V4R1

WHEN objtype = '\DTAARA' THEN dlt_noun = 'DTAARA'

WHEN objtype = '\DTAQ' THEN dlt_noun = 'DTAQ'

WHEN objtype = '\JOBD' THEN dlt_noun = 'JOBD'

WHEN objtype = '\JOBQ' THEN dlt_noun = 'JOBQ'

WHEN objtype = '\MENU' THEN dlt_noun = 'MNU'

WHEN objtype = '\MSGF' THEN dlt_noun = 'MSGF'

WHEN objtype = '\MSGQ' THEN dlt_noun = 'MSGQ'

WHEN objtype = '\PGM' THEN dlt_noun = 'PGM'

 OTHERWISE

END

 DLTCMD = 'DLT'dlt_noun /\ Concat DLT and dlt_noun into 1 word.\/

 DLTCMD 'PRODLIB/&object' /\ Issue COMMAND with var DLTCMD. \/

/\ Use a PCLV for object to be deleted.\/

 IF rc ¬= 'ð' THEN DO

msg = 'Unexpected error:'rc 'encountered while issuing:' DLTCMD,

'Please see Joblog for details'

 'SNDPGMMSG MSG(&MSG) TOPGMQ(\PRV)'

EXIT(1) /\ Exit with failure indication. \/

 END

 RETURN

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

/\ error_handler - \/

/\ REXX ERROR condition handler \/

/\ routine 'SET' to handler ERRORS \/

/\ occurring from a MOVOBJ command. \/

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

error_handler:

msg = 'Unexpected error:'rc 'encountered while issuing:' MOVOBJ,

' From TESTLIB to PRODLIB. Please see joblog for details'

 'SNDPGMMSG MSG(&MSG) TOPGMQ(\PRV)'

 EXIT(1) /\ Exit with failure indication. \/

RETURN

 Appendix F. Sample REXX Programs for the AS/400 System 173

Example 8: The following program can be used to try different trace options.

/\ This program performs a variety of operations. Different \/

/\ trace options are used in this program to show how they differ. \/

Say 'Enter trace option to use'

pull traceopt

Trace Value traceopt

Say '1+1 equals' 1+1

two = 2

Say 'The maximum of 1 and 2 is' Max(1,two)

Call Time

Say 'The current time is' result

Say 'Factorial 3 is' fact(3)

"SNDMSG MSG('Hello') TOUSR(\SYSOPR)"

"SNDMSG MSG('Hello') TOUSR(\WRONG)"

Say 'This message has a missing quote

exit

Fact: Procedure

arg n

if n = ð then return 1

else return n \ fact(n-1)

174 REXX/400 Programmer’s Guide V4R1

Appendix G. Communication Between REXX/400 and ILE/C

This appendix summarizes, with examples and descriptions, the methods by which
REXX/400 and ILE/C programs can communicate. The items that are covered are:

� How a REXX program can call an ILE/C program

� How the REXX/400 program can pass parameters to an ILE/C program

� How ILE/C receives the parameters when it gets control

� How the ILE/C program can let the REXX program know whether it ran
successfully

� How the ILE/C program can pass results, if any, to the REXX/400 program

� A complete example, which illustrates some of the principles mentioned above.

Note: The examples in this appendix work the same for C/400 programs and
ILE/C programs.

The purpose of this appendix is to combine information relevant to inter-program
communication in one place by using fully described program outlines and
examples, both in the REXX/400 and ILE/C languages. For detailed descriptions of
each of the interfaces described here, see the REXX/400 Reference.

Calling an ILE/C Program From REXX
REXX can call an ILE/C program in a number of ways, including:

� As an external subroutine

� As an external function

� As a command environment

� By using the CALL command.

Calling ILE/C as an External Subroutine
Calling an ILE/C program as an external subroutine is achieved by way of the
REXX/400 CALL instruction. The following is an example of the REXX code that
can be used:

/\ REXX/4ðð calls ILE/C as an external subroutine.\/

parm1 = 'value1' /\ Here is where the \/

parm2 = 'This is a string ' /\ parameters to be passed \/

/\ to the C program are set \/

/\ up (see note 1). \/

call "C_PROGRAM" parm1, parm2 /\ The call to the C program \/

/\ (see note 2). \/

return_value = result /\ The results from the C \/

/\ program are received \/

/\ (see note 3). \/

 Copyright IBM Corp. 1997 175

Notes:

1. Parameters can be set up as character strings containing any kind of data (for
example, numbers or words). Each parameter must be separated from the
others on the CALL instruction by a comma, in order to be received by the
called ILE/C program as an individual parameter. A maximum of 20
parameters can be passed. Also, all data in REXX/400 programs is stored as
character strings. The called program will have to convert the character data
received from REXX to whatever format it requires.

2. Although not necessary, the name of the ILE/C program called is in capital
letters and enclosed in quotation marks. This will cause the search for internal
subroutines (labels in your REXX/400 program) to be bypassed and result in a
faster call to your program. For the call to be successful, the called ILE/C
program must be in the job's current library list.

3. The REXX program may receive a result in the special variable RESULT if it
was set by the ILE/C program through the variable pool interface. Results may
also be returned in the REXX external data queue. These two APIs are
discussed in the following sections.

Calling ILE/C as an External Function
Special syntax is required when a REXX program calls another program or
subroutine as a function. This syntax is the same as it is for calling internal or
built-in functions. Otherwise, the rules are almost the same as for calling external
subroutines. The following is an example of the REXX code that can be used:

/\ REXX/4ðð calls ILE/C as an external function.\/

parm1 = 'value1' /\ Here is where the \/

parm2 = 'This is a string ' /\ parameters to be passed \/

/\ to the C program are set \/

 /\ up. \/

ret_val = "C_PROGRAM"(parm1, parm2) /\ The C program is called \/

/\ and the results are \/

/\ received (see note 1). \/

Note: The expression calling the ILE/C program is replaced by the result obtained
from it. This is why a program called as a function must return a result,
while a result is not required when a ILE/C program is called as a
subroutine. The called ILE/C program must use the variable pool interface
to pass this result to the interpreter. How to do this will be discussed later.

Calling ILE/C as a Command Environment
CL is the default command environment to which the interpreter passes all clauses
which are not REXX instructions. If the desired environment is an ILE/C program, it
must first be identified in the REXX program. This is accomplished by using the
ADDRESS instruction with the name of the ILE/C program, which may be a simple
or qualified name.

In this case, the ILE/C program is serving the REXX interpreter as a command
handler. The interpreter will evaluate all the parameters in the clause, concatenate
them in the order written, and pass them as a command to the specified
environment in a single character string.

176 REXX/400 Programmer’s Guide V4R1

The following is an example of the REXX code that can be used:

/\ REXX/4ðð passes parameters to ILE/C as a command to a

 command environment.\/

parm1 = 'value1' /\ Here is where the \/

parm2 = '"This is a string"' /\ parameters to be passed \/

/\ to the C program are set \/

/\ up (see note 1). \/

address 'LIBRARY/C_PROGRAM' /\ Setting the command \/

/\ environment (see note 2). \/

parm1 parm2 /\ The C program is called, \/

/\ passing the parameters \/

/\ (see note 3). \/

ret_code = RC /\ The results from the C \/

/\ program are received \/

/\ (see note 4). \/

Notes:

1. All the data to be passed to a command environment program is passed in one
character string parameter. If the command environment program needs to
have separate parameters, then it should define a delimiter character that can
be used to identify where one parameter ends and the next begins. In this
example, a single parameter is delimited by quotation marks, which the C
program will have to search for as it processes the command string.

2. If LIBRARY is not specified, the job's library list will be used to resolve to the
command environment program. Remember that this form of the ADDRESS
instruction makes a lasting change to the destination of commands. Any
command further on in the REXX program will be passed to your ILE/C
program unless the environment is changed by another ADDRESS instruction.

3. The expression, which may consist of a list of parameters, is evaluated. Since
there is no REXX instruction in this program clause, the entire expression is
submitted as a single command string to the environment declared in the last
ADDRESS instruction, which is the ILE/C program. The latter is responsible to
parse the single string into the individual parameters.

4. A return code will always be available in the special variable RC. If the ILE/C
program does nothing to return a value, RC will have the value 0. This is
because the parameter string in which the ILE/C program returns return codes
is preallocated and initialized to 0, indicating that the command ran
successfully. If the command environment program found a problem, such as
an error in the command string, the ILE/C program must indicate this by putting
a nonzero return code string in the buffer passed. Additional results obtained
by the ILE/C program can only be returned by using the REXX External Data
Queue or the Variable Pool Interface.

 Appendix G. Communication Between REXX/400 and ILE/C 177

Calling ILE/C with the CL CALL Command
As was mentioned previously, CL is the default command environment for
REXX/400 programs, unless it was specified otherwise on the call to the interpreter.
If the current command environment is not CL, it can be reset to the CL
environment by specifying an environment name of COMMAND as follows:

ADDRESS COMMAND

Any clause that the interpreter does not recognize as a REXX instruction, for
example, a quoted string, will now be passed to the CL command environment
where the OS/400 command processor will run it as a CL command.

When CL commands are run from REXX programs, they can include the names of
REXX variables which can be used and changed by the command. These
variables work in a way similar to variables in CL programs, thus they are called
pseudo-CL variables. Their names in the commands are prefixed with the
ampersand (&) character, and their names must conform to both the REXX and CL
naming conventions. For more information on pseudo-CL variables, see the
REXX/400 Reference and “Understanding Pseudo-CL Variables” on page 88.

With these requirements in mind, a REXX program can call an ILE/C program and
obtain results from it by using the CALL command. The following REXX code
illustrates how it can be done:

/\ REXX/4ðð program using CL to call an ILE/C program. \/

parm1 = 'This is a string' /\ Here is where the \/

parm2 = 123456 /\ parameters to be passed \/

parm3 = '' /\ to the C program are set \/

/\ up (see note 1). \/

address command /\ See note 2. \/

'call C-PROGAM parm(&parm1, &parm2, &parm3)' /\ See note 3. \/

say 'C program ended with return code' RC

/\ See note 4. \/

Notes:

1. The CALL command is run as if it was issued from a command line.
Remember that all variable values in REXX are character strings even if they
appear to be numeric as in parm2 above. So, even if a parameter looks like a
number, it is only converted to packed decimal if it is not contained in a
pseudo-CL variable. See the ILE/C program under “Calling ILE/C Programs
with the CL CALL Command” on page 183 to see how the parameters passed
in this example are received.

2. The ADDRESS instruction makes sure that the command is passed to the CL
command environment. Without it, the command might be passed to another
command environment.

3. Since the clause is only an expression, it is interpreted as a command and
passed to the current command environment.

4. The CL command environment will always see to it that the REXX special
variable RC is set to a value. RC will contain a 0 if no escape message is
received by the interpreter, otherwise it will have the 7-character message ID of
the escape message.

178 REXX/400 Programmer’s Guide V4R1

See “Returning Results and Return Codes from ILE/C Programs” on page 184 for
a summary of where and how to find return codes and results received from a
called ILE/C program.

Passing Parameters and Control to ILE/C
Remember that even though we may talk about a REXX program and how it is
called, REXX programs are not program objects and are not called in the same
way that program objects are called. A REXX program is just a source file member
that contains a listing of all the actions required by the program's user. When a
REXX program is run, the REXX interpreter is called with the name of the source
member containing the program to be run. The interpreter then reads and runs the
statements in the source file member. When the interpreter finds a statement that
tells it to call a program that is not written in REXX, it calls the program passing the
parameters in the special form defined by the interface.

Some of the most commonly used of these conventions are described in the
following sections.

Calling External Subroutines and Functions
Whenever the interpreter comes across a call to an external subroutine or a
function call, each of the parameter strings accompanying the call is changed into a
RXSTRING format before it is passed to the ILE/C program.

The RXSTRING format is a structure declared in the C language as follows:

typedef struct

{ char \ rxstrptr; /\ Pointer to data string.\/

unsigned long rxstrlen; /\ Length of data string. \/

} RXSTRING;

Note: When the interpreter stores the contents of a RXSTRING parameter before
passing control to the ILE/C program, it does not end the string with a null
character (\0). The ILE/C program must, therefore, use the length member of the
structure to find the end of the string.

The interpreter then passes control to the ILE/C program together with pointers to 4
data items. These are:

1. An array of RXSTRINGs, each one pointing to a parameter string

2. The number of parameters sent from REXX

3. An indicator how the ILE/C program was called (either as a function or as a
subroutine)

4. A pointer to a two-byte integer where the interpreter will expect a return code to
be placed

For a complete description of these data items, see the REXX/400 Reference.
Note that argv[1] will be pointing to an array of RXSTRING structures, each of
which points to one of the parameter strings.

 Appendix G. Communication Between REXX/400 and ILE/C 179

Calling a Command Environment
When the interpreter comes across a command, it evaluates the expression and
builds a command string. It then stores the command string (which contains all of
the command's parameters in a single string) in the form of a SHORT_VARSTRING
structure in storage. It does not end the string with a null character (\0). It also
allocates space for another SHORT_VARSTRING structure (in which it expects the
ILE/C program to put a return value when the latter has experienced any problems)
as well as a two-byte integer (in which it expects the ILE/C program to put an
Error/Failure code if necessary). The addresses of these three items are now
passed to the ILE/C program.

A SHORT_VARSTRING structure is declared in the C language as follows:

typedef struct

{ short int short_length; /\ Length of accompanying data string.\/

char short_string[1]; /\ The data string itself. \/

} SHORT_VARSTRING;

The SHORT_VARSTRING structure in which the interpreter expects the return
value is preallocated to a length of 500 bytes and set to 0. The Error/Failure code
integer is set to 0. This is done by the interpreter to save the ILE/C program the
job of setting these codes if no errors were encountered.

The interpreter now calls the ILE/C program which was specified as the current
command environment and passes pointers to these three data items as
parameters.

Note: Although the short_string member of the SHORT_VARSTRING structure
is defined as an array of length one in the example above, ILE/C does no runtime
array boundary checking, so the string may be longer than one byte. Also,
because the command string in storage has no ending \0, the length member must
be used to obtain the correct data.

For more information, see the REXX/400 Reference.

Using the CL CALL Command
When REXX uses the CALL command to call a ILE/C program, the interaction
between REXX and CL as well as the interaction between CL and ILE/C is
transparent to the REXX programmer. The only significant items are that the ILE/C
program will receive all REXX parameters as separate strings with null characters
(\0) attached, and that the RC variable in REXX will be set after running the ILE/C
program, if the program ended with an escape message.

Using the REXX External Data Queue
Another way of passing parameters from your REXX program to your ILE/C
program is to make use of the external data queue. This method can be used in
conjunction with all the interfaces mentioned above. Your REXX program puts the
parameters in the REXX external data queue with the PUSH or QUEUE
instructions, and then, by using any of the three methods discussed, calls your
ILE/C program with or without additional parameters. Your ILE/C program then
uses the QREXQ system API to pull the parameters from the external data queue.

180 REXX/400 Programmer’s Guide V4R1

Receiving Parameters in an ILE/C Program
With the information discussed thus far, we are now in a position to start coding our
called ILE/C program and to receive the parameters sent to it by the interpreter.
The main objective of this section is to show how the parameters passed from
REXX are received in ILE/C variables.

Calling ILE/C Programs as External Functions or Subroutines
The example below shows some code to receive parameters from REXX when the
ILE/C program was called as an external function or subroutine.

typedef struct /\ The RXSTRING structure. \/

{ char \rxstrptr ; /\ Pointer to string data. \/

unsigned long rxstrlen ; /\ Length of string. \/

} RXSTRING; /\ \/

main(int argc, char \argv[])

{

/\ Declaration of Local variables to receive the passed para- \/

/\ meters follows: \/

RXSTRING \args ; /\ Parameter array (see note 1). \/

short int numargs ; /\ Number of elements in the \/

/\ parameter array. \/

short int func_sub ; /\ Function or external \/

/\ subroutine call. \/

short int \errflag ; /\ Success/Failure flag. \/

/\ Some code to get the information passed into the declared \/

/\ local variables following. \/

args = (RXSTRING \) argv[1] ; /\ (See note 2.) \/

numargs = \(short int \) argv[2] ; /\ Maximum of 2ð allowed. \/

func_sub = \(short int \) argv[3] ; /\ (See note 3.) \/

errflag = (short int \) argv[4] ; /\ (See note 4.) \/

/\ All the remaining ILE/C program statements. \/

}

Notes:

1. The variable args will contain a pointer to an array of structures of type
RXSTRING. Each of these structures will contain information about one of the
passed parameters.

2. Each parameter passed to the ILE/C program can now be referenced by the
expression (\args)[x] where x varies from ð to (numargs - 1). Remember,
however, that the actual string representing a parameter is not ended with a
null character (\0), and that the length member of the RXSTRING structures
must be used to determine the length of the actual parameter. For example, if
we have declared a counter i earlier in our program and we want to display the
'i-th' passed parameter, the following code can be used:

printf("Parameter number %d passed is: %.\s\n", i+1,

 args[i].rxstrlen, args[i].rxstrptr);

3. The variable func_sub will contain a 1 if our ILE/C program was called as an
external subroutine and a 2 if it was called as an external function. If our ILE/C

 Appendix G. Communication Between REXX/400 and ILE/C 181

program was called as a function, it must return a result to REXX through the
variable pool interface. If called as an external subroutine, returning a result is
optional. How results are returned will be discussed under “Returning Results
and Return Codes from ILE/C Programs” on page 184.

4. The variable errflag is used by the C program to indicate to the interpreter
whether the function ran successfully or not.

Calling ILE/C Programs as Command Environments
The example below shows some code to receive the command string when your
ILE/C program was called as a command environment.

typedef struct /\ Declaration of SHORT_VARSTRING.\/

{ short int short_length ; /\ Length of string. \/

char short_string[1] ; /\ String data. \/

} SHORT_VARSTRING ; /\ \/

main(int argc, char \argv[])

{

/\ Declaration of Local variables to receive the passed para- \/

/\ meters following. \/

SHORT_VARSTRING \command ; /\ Command string - (see note 1).\/

SHORT_VARSTRING \rc ; /\ Return code - (see note 2). \/

short int \err_fail ; /\ Success/Failure flag. \/

/\ Some code to get the information passed into the declared \/

/\ local variables following. \/

command = (SHORT_VARSTRING \) argv[1] ; /\ (See note 1.) \/

rc = (SHORT_VARSTRING \) argv[2] ; /\ (See note 2.) \/

err_fail = (short int \) argv[3] ; /\ (See note 3.) \/

/\ All the remaining ILE/C program statements. \/

}

Notes:

1. In this case, argv[1] contains a single pointer to the SHORT_VARSTRING
structure described earlier. This is because all the parameters sent by REXX
have been put in a single string. Once again, the command string does not
have an ending null character (\0), so your code must use the length field of
the SHORT_VARSTRING structure. For example, if you want to display the
command string received in the example above, you will code:

printf("The command string is: %.\s\n", command->short_length,

 command->short_string);

Moreover, because you will be receiving all the parameters in one string, your
ILE/C program must do the parsing of the parameters. If one of the
parameters consists of a string of separate words, make sure that your REXX
program has it delimited by characters which will be known by your ILE/C
program (for instance, quotation marks).

2. argv[2] will also contain a pointer to a SHORT_VARSTRING structure. The
string member of this structure is preallocated to a length of 500 characters and
set to 0. The members of this structure must be reset by the ILE/C program to
return values for the special variable RC if any problems were encountered.

182 REXX/400 Programmer’s Guide V4R1

The interpreter will automatically update the REXX variable RC with what you
put in this structure. RC may then be used by your REXX program to figure
out what went wrong.

3. argv[3] is a pointer to a two byte integer which is initialized by the interpreter
to 0. If not altered by your ILE/C program, this will indicate to REXX that your
ILE/C program ran successfully. You may, however, assign a 1 or a 2 to this
variable, indicating to the interpreter that some problems have been
encountered. A 1 would tell the interpreter to raise the ERROR condition and a
2, the FAILURE condition.

Calling ILE/C Programs with the CL CALL Command
As already seen, all REXX parameters received at an ILE/C program through the
CL command environment are valid C strings that end with null characters. The
following ILE/C program illustrates how the variables sent by the REXX program in
“Calling ILE/C with the CL CALL Command” on page 178 are received:

main(int argc, char \argv[])

{

printf("First parm received is ++%s++\n",argv[1]); /\ See below.\/

printf("Second parm received is ++%s++\n",argv[2]);/\ See below.\/

printf("Third parm received is ++%s++\n",argv[3]); /\ See below.\/

 return;

}

The output for this program will be:

First parm received is ++This is a string++

Second parm received is ++123456++

Third parm received is ++++

Receiving Parameters from the REXX External Data Queue
Apart from the ways in which ILE/C programs can receive parameters from REXX
that have already been discussed, they can also receive any data that the ILE/C
program expects through the REXX external data queue. This functions as a
common buffer between REXX and any other language that REXX communicates
with. Data can be placed in and retrieved from the queue by any program at any
time.

Although nothing prohibits the programmer from using the REXX external data
queue to pass parameters, this is not normally done. The external data queue is
more commonly used to send data records between the two participating programs.

An example of how the REXX external data queue is used is given in “Example
Using the REXX External Data Queue” on page 194, after it is discussed in more
detail under “Returning Results in the REXX External Data Queue” on page 193.

 Appendix G. Communication Between REXX/400 and ILE/C 183

Returning Results and Return Codes from ILE/C Programs
When REXX programs call other programs, they generally expect returned values
that indicate success or failure of that program, or that are the results that program
has obtained. The following is a summary of what REXX expects in each situation:

Calling an External Subroutine: When control is returned to REXX after an
external subroutine has been called, the special variable RESULT may or may not
have a value. This is because it is not mandatory for the called external subroutine
to return anything. However, if it does, it must make use of the SHVEXTFN
function of the variable pool interface to return the information. This is discussed in
“Returning Results with the Variable Pool Interface” on page 185.

The RC special variable is not used in this case.

Calling an External Function: The expression that specifies the function to be
called is replaced by the function's result. This is also done by using the
SHVEXTFN function of the variable pool interface. Neither RESULT nor RC are
used.

Sending Commands to a User-defined Command Environment: The special
variable RC will always contain a return code while the special variable RESULT is
not used. As seen in “Calling ILE/C Programs as Command Environments” on
page 182, an ILE/C program that is specified as the current command environment
is always called with three parameters. The string part of the
SHORT_VARSTRING structure to which the second parameter points (the return
code buffer) is preallocated to a length of 500 characters and set to a value of 0.
The two-byte integer that the third parameter is pointing to, is initialized to 0. If the
ILE/C program runs successfully, these values remain as is and the 0 in the buffer
is assigned to the special RC variable by the interpreter. If, however, an ERROR
or FAILURE condition should arise in the ILE/C program, it is the programmer's
responsibility to set the two-byte integer, to which the third parameter is pointing, to
a 1 or a 2 respectively. The programmer must also assign an appropriate error
indication string, with a maximum length of 500 characters, to the string part of the
return code buffer structure and update the length part to indicate the length of the
string.

Note: If the interpreter receives an escape message from the command
environment program, the return code buffer is ignored, and the RC variable is set
to the message ID of the received escape message.

Using the CL CALL Command: The CL command environment will always set
RC before returning control to REXX. The value will be a zero (0) if the called
program ran successfully. If problems occurred while running the program, the
program should issue an escape message. The RC variable will be set to the
escape message ID. For information on how error codes are handled, see the
REXX/400 Reference.

In addition, the C program can assign values to parameters that were specified as
pseudo-CL variables. The REXX program can then use the contents of those
variables.

184 REXX/400 Programmer’s Guide V4R1

Returning Results with the Variable Pool Interface
You should be familiar with the description of the “Shared-Variable Request Block”
in the REXX/400 Reference before starting to read this section. That description
will not be repeated here, but is required to refer to when you want to learn how to
use the function.

Whenever a REXX program is started, a space which will contain information about
all variables used in the program is created and maintained by the interpreter. The
interpreter sees to it that all data that makes up the value of a specific variable is
linked to that variable's name. Any changes made to the contents of a variable in a
REXX program, are recorded by the interpreter so that when the variable is
accessed by name again, the new value will be available. The space where this
information is kept is known as the variable pool.

QREXVAR is a program in the QSYS library that may be called by a program
written in another language to access this variable pool. With this interface, the
program can read, change, create, or delete any data contained in there. This
called program must have been called by a REXX program, directly or indirectly,
before this function becomes available. Also, only the variable pool of the currently
active REXX program will be accessible to this program.

Only languages that make use of pointers are able to make use of this function.
This is because QREXVAR expects a pointer to a list of pointer-linked request
blocks as one of its parameters when it is called, and because these request blocks
contain RXSTRING structures, each of which contains a pointer. The only other
parameter QREXVAR expects is a pointer to a two-byte integer in which it will
place a return code to indicate what happened while it was running.

QREXVAR is called as follows:

#pragma linkage(QREXVAR,OS) /\ OS/4ðð linkage conventions \/

extern void QREXVAR (SHVBLOCK \, short int \); /\Prototype \/

QREXVAR(shvblock_ptr, &return_code); /\Calling the API \/

The shvblock_ptr parameter is a pointer to the list of request blocks mentioned
above. The layout of a request block in ILE/C is as follows:

typedef struct shvnode

{ struct shvnode \shvnext; /\Pointer to next request block.\/

RXSTRING shvname ; /\Pointer to variable name. \/

RXSTRING shvvalue; /\Pointer to value buffer. \/

unsigned char shvcode ; /\Individual function code. \/

unsigned char shvret ; /\Individual return code flags. \/

} SHVBLOCK;

The first field of this request block, shvnext, may contain a pointer to another
request block so that a chain of request blocks can be submitted to QREXVAR in a
single call. QREXVAR will process these request blocks one after the other until it
finds a null pointer (ð) in a shvnext field. This indicates that the last request block
has been reached.

The second field, shvname, describes the name, in a RXSTRING structure format, of
the variable on which an operation must be performed. See “Calling External
Subroutines and Functions” on page 179 for a description of the RXSTRING

 Appendix G. Communication Between REXX/400 and ILE/C 185

structure format. This name, and its length, must be supplied by the ILE/C program
when operations on a particular variable are to be performed. For the fetch next
variable function, this RXSTRING must identify the location and length of a buffer
that will receive the name of the variable. QREXVAR will fill this buffer with the
name and update the rxstrlen field to reflect the actual length of the variable
name.

The third field, shvvalue, describes the value in a RXSTRING structure format of
the variable on which an operation must be performed. The ILE/C program must
update this field with the value it wants to assign to an existing or new variable. If
QREXVAR is requested to return the value of a variable, this RXSTRING must
identify the location and length of a buffer that will receive the value of the variable.
QREXVAR will fill this buffer with the value and update the rxstrlen field to reflect
the actual length of the value.

The fourth field, shvcode, is an unsigned one character field that contains the code
of the function to be performed by QREXVAR. Currently, 10 functions are available
and the decimal numbers 0 through 9 have been assigned to them. These
numbers are used in this field to identify the required function to QREXVAR. In this
book a name is assigned to each of these codes, by means of the #define
preprocessor command, to enhance the readability of the ILE/C programs and to
establish a common naming convention.

The fifth and last field, shvret, is an unsigned one character field that will contain a
return code for that individual request block that is set by QREXVAR. There are
currently 7 different possible return codes: 0,1,2,4,8,16, and 128. Just as there is a
name for each function code, in this book a name is assigned to each of these
codes, by means of the #define preprocessor command, to enhance the readability
of the ILE/C program and to establish a common naming convention.

When QREXVAR returns control to the calling program, the individual return codes
of all the requests that were submitted on this call are joined using logical ORs to
form the final return code which is returned in the second QREXVAR parameter.

See the REXX/400 Reference for a complete description of all the sub-functions of
QREXVAR as well as the meanings of the individual return codes from the request
block(s).

To illustrate the use of this function, two examples are given:

1. The first shows a call from a REXX program to an ILE/C program which does
nothing but change the value of a REXX variable. The name of the variable to
be changed and its new value are passed as parameters to the ILE/C program.
The REXX program does not expect any results.

2. The second example shows a REXX program which expects the ILE/C program
it calls to do the following:

� To drop the variable named in the first parameter

� To change the value of the variable named in the second parameter to the
value which appears in the third parameter

� To create a new variable with the name that appears in the fourth
parameter with a value which appears in the fifth parameter

� To do the three actions mentioned above with a single call to the
QREXVAR API

186 REXX/400 Programmer’s Guide V4R1

� To return the string SUCCESS to the REXX program if the operation was
successful, otherwise to return the string FAILURE.

Note: Although the code in the examples constitute runable programs, many
steps, such as receiving all parameters and testing validities, have been omitted in
order to keep the examples as concise as possible.

Example 1: The REXX program for this example is as follows:

/\ REXX Program calling an ILE/C program called CCHGVAR to change the \/

/\ value of one of its existing variables in the shared variable pool. \/

p1 = 'parm one' /\Create the required existing variable. \/

p2 = 'New value for p1' /\The value that p1 must be changed to. \/

SAY "p1's value before change is:" p1 /\Displays 'parm two'. \/

call 'CCHGVAR' 'P1', p2 /\Ask C to change p1's value through VPI. \/

/\Note that 'P1' is in capital letters \/

/\because SHVSET is used in ILE/C. \/

SAY "p1's value after the change is:" p1 /\Displays 'New value for p1'.\/

The ILE/C program for this example is as follows.

/\\\/

/\This program is expecting only the name of the REXX variable to \/

/\be changed and the value to which it must be changed in argv[1]. \/

/\No attempt is made to receive the other parameters in argv[]. \/

/\\\/

 #include <stdio.h>

/\The following code declares the structure of an RXSTRING - This is a good\/

/\candidate for an include header file. \/

typedef struct /\ RXSTRING structure definition \/

{ char \ rxstrptr ; /\ Pointer to data \/

unsigned long rxstrlen ; /\ Length of data \/

} RXSTRING ;

/\The following code declares a structure for a request block to the \/

/\QREXVAR system API - Also a good candidate for an include header file. \/

typedef struct shvnode /\ Shared V.P request block definition\/

{ struct shvnode \shvnext; /\ Pointer to the next block. \/

RXSTRING shvname; /\ Pointer to the name buffer. \/

RXSTRING shvvalue; /\ Pointer to the value buffer. \/

unsigned char shvcode; /\ Sub-function code for this block. \/

unsigned char shvret; /\ Individual Return Code Flag. \/

 } SHVBLOCK;

/\The following code defines meaningful names to the sub-functions and \/

/\return codes of QREXVAR. Only those that will be used need to be defined.\/

/\A better idea might be to include the definitions for all sub-functions \/

/\and return codes in an include header file. \/

#define SHVSET ðxðð /\ Request to set a variable's value. \/

#define SHVCLEAN ðxðð /\ The request ran OK (Return code). \/

#pragma linkage(QREXVAR,OS) /\ Pragma for the V.P API. \/

void QREXVAR(SHVBLOCK \, short int \); /\Prototype for V.P API. \/

 Appendix G. Communication Between REXX/400 and ILE/C 187

main(int argc, char \argv[])

 {

RXSTRING \args; /\Array of pointers to received parms.\/

SHVBLOCK block; /\Name of request block structure. \/

short int retcode = SHVCLEAN; /\Expected return code from API. \/

args = (RXSTRING \) argv[1]; /\Receive parameters passed. \/

/\Note that the other parameters received are ignored in this example. \/

/\Now build the request block: \/

block.shvnext = (SHVBLOCK \)ð;/\Only one request block required (ð) \/

block.shvname = args[ð]; /\Name of variable to be changed. \/

block.shvvalue= args[1]; /\New value for this variable. \/

block.shvcode = SHVSET; /\Sub-function request. \/

block.shvret = SHVCLEAN; /\Initialized to no errors. \/

QREXVAR(&block,&retcode); /\ Call variable pool interface. \/

/\If the API has encountered any errors, 'retcode' will contain something \/

/\different than the SHVCLEAN it was initialized with. In such a case \/

/\the short int error flag that argv[4] is pointing to, \/

/\can be set to a nonzero value in which case the interpreter will raise \/

/\error 4ð and set the SYNTAX condition in the calling REXX program. \/

 return;

 }

Example 2: The following is the REXX program for this example:

/\REXX program illustrating the actions to be taken to achieve the \/

/\requirements for the second example above. \/

parm1 = '1stparm' /\Variable to be dropped. \/

parm2 = '2ndparm' /\Variable to get the new value. \/

p3 = 'Now changed to 1stparm' /\Value to be assigned to 'parm2'. \/

p4 = 'PARM3' /\Name of new variable - Note caps. \/

p5 = 'This is now parm2' /\Value for new variable. \/

say "The values of parm1, parm2, and parm3 before VPI changes are:" \/

say "parm1 = "parm1 /\Displays '1stparm'. \/

say "parm2 = "parm2 /\Displays '2ndparm'. \/

say "parm3 = "parm3 /\Displays 'PARM3' - Still unknown. \/

/\Call the QREXVAR API using the ILE/C program CCHGVAR and test the result.\/

call 'CCHGVAR' 'PARM1', 'PARM2', p3, p4, p5

say "The values of parm1, parm2, and parm3 after VPI changes are:"

say "parm1 = "parm1 /\Displays 'PARM1' - Now unknown. \/

say "parm2 = "parm2 /\Displays 'Now changed to 1stparm'. \/

say "parm3 = "parm3 /\Displays 'This is now parm2'. \/

ret_cde = Result /\Receive the result. \/

Say "Operation was a "ret_cde /\Displays 'SUCCESS' or 'FAILURE'. \/

Here is the ILE/C program CCHGVAR for this example:

188 REXX/400 Programmer’s Guide V4R1

/\\\/

/\This program expects pointers to five RXSTRINGS in argv[1]: The first one \/

/\to the name of a REXX variable to be dropped from the VPI; the second to \/

/\the name of a variable of which the value must be changed to the value \/

/\pointed to by the third pointer; the fourth to the name of a new variable \/

/\to be created with the value pointed to by the fifth pointer. Either \/

/\"SUCCESS" or "FAILURE" is returned to the REXX variable RESULT. \/

/\\\/

 #include <stdio.h>

 #include <string.h>

/\The following code declares the structure of an RXSTRING - This is a good \/

/\candidate for an include header file. \/

typedef struct /\ RXSTRING structure definition \/

{ char \ rxstrptr ; /\ Pointer to data \/

unsigned long rxstrlen ; /\ Length of data \/

} RXSTRING ;

/\The following code declares a structure for a request block to the QREXVAR \/

/\system API - Also a good candidate for an include header file. \/

typedef struct shvnode /\ Shared V.P request block def. \/

{ struct shvnode \shvnext; /\ Pointer to the next block \/

RXSTRING shvname; /\ Pointer to the name buffer \/

RXSTRING shvvalue; /\ Pointer to the value buffer \/

unsigned char shvcode; /\ Sub-function code for this block \/

unsigned char shvret; /\ Individual Return Code Flag \/

 } SHVBLOCK;

/\The following code defines meaningful names to the sub-functions and \/

/\return codes of QREXVAR. Only those that will be used need to be defined. \/

/\A better idea might be to include the definitions for all sub-functions and\/

/\return codes in an include header file. \/

#define SHVSET ðxðð /\ Request to set a variable's value\/

#define SHVDROPV ðxð2 /\ Drop a variable from the VPI. \/

#define SHVEXTFN ðxð9 /\ Set exit code (value for RESULT).\/

#define SHVCLEAN ðxðð /\ The request ran OK (Return code).\/

#define SHVNEWV ðxð1 /\ New variable - did not exist. \/

#pragma linkage(QREXVAR,OS) /\ Pragma for the V.P API. \/

RXSTRING empty_str = {(char \)ð,ðL}; /\ Used when no value is needed. \/

void QREXVAR(SHVBLOCK \, short int \); /\Prototype for V.P API. \/

RXSTRING crte_rx(char \); /\Prototype to create a RXSTRING. \/

short int result_via_vp(char \); /\Prototype to create a req. block. \/

main(int argc, char \argv[])

 {

/\Only two of the parameters are received because the others are not used. \/

RXSTRING \args; /\Pointers to received parms. \/

short int \errflag; /\Success/Failure error flag. \/

/\The SHVNEWV return code is expected with the creation of the new variable \/

/\and the SHVCLEAN with the others. \/

short int retcode = SHVCLEAN|SHVNEWV; /\Expected return code from API.\/

 Appendix G. Communication Between REXX/400 and ILE/C 189

short int recvd_retcode; /\Retcode actually recvd in here\/

SHVBLOCK drpv,chgv,crtv; /\Names for blocks to be built. \/

args = (RXSTRING \) argv[1]; /\Receive parameters passed \/

errflag = (short int \) argv[4]; /\Pointer to the error flag \/

/\Better coding practice would have been to build the linked list of request \/

/\blocks by way of a subroutine but the following method is used for clarity.\/

/\Now build req. blocks in reverse order to obtain pointers needed. First the\/

/\block for the new variable. Note pointer to next block = ð ==> (last block)\/

crtv.shvnext = (SHVBLOCK \)ð; /\ This is the last request. \/

crtv.shvname = args[3]; /\ Name of to be created. \/

crtv.shvvalue= args[4]; /\ Value for new variable. \/

crtv.shvcode = SHVSET; /\ Sub-function request. \/

crtv.shvret = SHVNEWV; /\ Expected return code. \/

/\The next code will build a request block to change the existing variable's \/

/\value. It is pointing to the next block (the one previously built). \/

chgv.shvnext = &crtv; /\ Points to next block. \/

chgv.shvname = args[1]; /\ Name of var. to be changed. \/

chgv.shvvalue= args[2]; /\ New value. \/

chgv.shvcode = SHVSET; /\ Sub-function request. \/

chgv.shvret = SHVCLEAN; /\ Expected return code. \/

/\The next code creates a request block to drop an existing variable. \/

drpv.shvnext = &chgv; /\ Points to next block. \/

drpv.shvname = args[ð]; /\Name of variable to be dropped\/

drpv.shvvalue= empty_str; /\ No value needed. \/

drpv.shvcode = SHVDROPV; /\ Sub-function request. \/

drpv.shvret = SHVCLEAN; /\ Expected return code. \/

QREXVAR(&drpv,&recvd_retcode); /\ Call variable pool interface \/

if (retcode == recvd_retcode) /\ if aggregate retcode is bad \/

\errflag = result_via_vp("SUCCESS"); /\Set RESULT variable in REXX\/

 else

\errflag = result_via_vp("FAILURE"); /\Set RESULT variable in REXX\/

 return;

 }

/\The next subroutine builds a request block to place a value in the REXX \/

/\variable RESULT and submits the request to QREXVAR. \/

short int result_via_vp(char \result)

{ SHVBLOCK blk; /\ Name the request block. \/

short int expected_rc = SHVCLEAN; /\ Set expected return code. \/

/\Now build the request block ... \/

blk.shvnext = (SHVBLOCK \)ð; /\ This is the only block. \/

blk.shvname = empty_str; /\ RESULT automatically set. \/

blk.shvvalue= crte_rx(result); /\ RXSTRING format needed. \/

blk.shvcode = SHVEXTFN; /\ Sub-function request. \/

blk.shvret = SHVCLEAN; /\ Expected return code. \/

QREXVAR(&blk,&expected_rc); /\ Call the API. \/

190 REXX/400 Programmer’s Guide V4R1

return expected_rc; /\ Return return code. \/

/\If API was not successful, a nonzero code will be returned to errflag. \/

 }

/\The next subroutine creates a RXSTRING from the value its arg is pointed to\/

RXSTRING crte_rx(char \str)

{ RXSTRING rx; /\Name a RXSTRING structure. \/

rx.rxstrlen = strlen(str); /\Store its length \/

rx.rxstrptr = str; /\and the pointer to the string.\/

return rx; /\Return the RXSTRING. \/

 }

Returning Results from the CL Command Environment
When an ILE/C program, called by the CL command environment on behalf of
REXX, needs to return results to the REXX program, there are three ways it can be
done:

� Using the variable pool interface (VPI)

� Using the REXX external data queue

� Setting values into the parameters with which the ILE/C program was called
that were specified as pseudo-CL variables.

The following is an example of REXX code which calls an ILE/C program through
the CL command environment. The REXX program passes two parameters: the
name of a variable in the REXX program, and a character string which the ILE/C
program is to assign to the variable named in the first parameter by using the
variable pool interface.

/\ REXX calling ILE/C through CL requesting VPI services.\/

parm1 = 'This is a string' /\ Creating an existing variable. \/

parm2 = 'PARM1' /\ Store name of existing variable. \/

parm3 = 'New value for parm1' /\ New value for existing variable. \/

say "PARM1's value before change: "parm1 /\Displays 'This is a string'.\/

'call CCLCHG parm(&Parm2 &Parm3)' /\ Command to CL command environment.\/

say 'Return code is: 'RC /\ RC contains ð if successful. \/

say "PARM1's value after change: "parm1/\Displays 'New value for parm1'\/

The ILE/C program shown below is called from REXX using the CALL command. It
expects the two parameters mentioned above and will call the QREXVAR API to
change the value of the REXX variable PARM1.

 Appendix G. Communication Between REXX/400 and ILE/C 191

/\\\/

/\This program is expecting only the name of the REXX variable to \/

/\be changed and the value to which it must be changed in argv[1] \/

/\and argv[2]. It is called through the CL command environment. \/

/\\\/

 #include <stdio.h>

typedef struct /\ RXSTRING structure definition. \/

{ char \ rxstrptr ; /\ Pointer to data. \/

unsigned long rxstrlen ; /\ Length of data. \/

} RXSTRING ;

typedef struct shvnode /\ Shared V.P request block definition\/

{ struct shvnode \shvnext; /\ Pointer to the next block. \/

RXSTRING shvname; /\ Pointer to the name buffer. \/

RXSTRING shvvalue; /\ Pointer to the value buffer. \/

unsigned char shvcode; /\ Sub-function code for this block. \/

unsigned char shvret; /\ Individual Return Code Flag. \/

 } SHVBLOCK;

#define SHVSET ðxðð /\ Request to set a variable's value. \/

#define SHVCLEAN ðxðð /\ The request ran OK (Return code). \/

#pragma linkage(QREXVAR,OS) /\ Pragma for the V.P API. \/

void QREXVAR(SHVBLOCK \, short int \); /\Prototype for V.P API. \/

RXSTRING crte_rx(char \str); /\Prototype for internal function. \/

main(int argc, char \argv[])

 {

SHVBLOCK block; /\Name of request block structure. \/

short int retcode = SHVCLEAN; /\Expected return code from API. \/

block.shvnext = (SHVBLOCK \)ð; /\Only one request block required (ð).\/

block.shvname = crte_rx(argv[1]); /\Name of variable to be changed. \/

block.shvvalue= crte_rx(argv[2]); /\New value for this variable. \/

block.shvcode = SHVSET; /\Sub-function request. \/

block.shvret = SHVCLEAN; /\Initialized to no errors. \/

QREXVAR(&block,&retcode); /\ Call variable pool interface. \/

if (retcode != SHVCLEAN) /\ If API was not successful... \/

printf("Variable pool failed with %hd\n",retcode); /\ Notify User \/

 return;

 }

/\The next subroutine creates a RXSTRING from the value its arg is pointed to. \/

RXSTRING crte_rx(char \str)

{ RXSTRING rx; /\Name a RXSTRING structure. \/

rx.rxstrlen = strlen(str); /\Store its length. \/

rx.rxstrptr = str; /\and the pointer to the string. \/

return rx; /\Return the RXSTRING. \/

 }

192 REXX/400 Programmer’s Guide V4R1

Returning Results in the REXX External Data Queue
The REXX external data queue is nothing more than a large buffer (the maximum
size is about 15.5MB) in which REXX places any data it chooses to transmit to
other programs or from which it retrieves any data placed there by those programs.
It may of course store data temporarily on the queue and retrieve it from there itself
later when needed.

The REXX external data queue is created when a job begins and remains active
until the job has finished. All programs running in the same job have access to the
REXX external data queue which was created for that job. The queue for a
particular job is not visible to any other job on the system.

In order to extend the flexibility of REXX programs, the queue may be subdivided
into a number of logical buffers. The new CL command ADDREXBUF has been
provided for this purpose. Also, the new CL command RMVREXBUF is provided to
remove buffers created by the ADDREXBUF command, or to clear all data from the
queue.

The maximum size of a single data item on the REXX external data queue is
limited to 32,767 bytes. No character placed on the queue has any special
meaning or effect—data items are placed and retrieved as complete lines. The
data in the REXX external data queue can be regarded as variable length records.

REXX places data on the REXX external data queue with its PUSH and QUEUE
instructions and retrieves it from there with its PULL instruction. See the REXX/400
Reference for a description of these instructions.

ILE/C accesses the REXX external data queue by way of the supplied system API
named QREXQ in the QSYS library, which expects five parameters. They are:

1. An indication of the service required (like Add or Pull)

2. A data buffer containing the data to be added or to receive the data pulled

3. Additional information needed by the API (mainly used to indicate the length of
the data string to be added to or pulled from the queue)

4. An operation flag

5. The address of a one byte character in which QREXQ will place a return code
to indicate success or failure of its operation

For a detailed description of the parameters required by this API, see the
REXX/400 Reference.

An example of how the services of the REXX external data queue are used is
provided under the heading “Example Using the REXX External Data Queue” on
page 194.

 Appendix G. Communication Between REXX/400 and ILE/C 193

Example Using the REXX External Data Queue
This appendix is concluded with a practical example of how to use the REXX
external data queue as communication vehicle between REXX and ILE/C.

Problem Description: You want to be automatically reminded of your valuable
customers' (or maybe your wife's) birthday every morning when you sign on, if it
falls within the next 7 calendar days. You also want a choice to skip the function if
you cannot spare the time for it on any specific day. You also want to add names
and birthdays to the file where the information is kept.

Limitations of the Program: To limit the size of this example, the following
restrictions will be used:

� In all prompts where a yes or no answer is required, a y or Y will indicate the
affirmative while anything else will indicate a no answer.

� Names must be two words (no more, no less) and will be truncated without
warning if more than 20 characters in total are used.

� Birth dates must be given in the format MMDD (for example, ð214 means the
14th of February).

Data is stored in a physical file with 25-byte records. The REXX program could be
called from an initial program as specified in the AS/400 User Profile. The ILE/C
program called by REXX only reads records from the file and places them on the
REXX external data queue or writes the records placed there by the REXX
program. However, it returns the string updated with your input if the database
file was successfully updated with the records supplied by the REXX program. It
also displays any error codes received from the QREXQ API. It is called as an
external subroutine and receives its commands (for example, whether to read or to
write, the file's name, and whether to add the records read to the head or the tail of
the queue) from a parameter list specified on the REXX CALL instruction. Most
logic and decision making will be done in the REXX program.

194 REXX/400 Programmer’s Guide V4R1

The following is an example of the REXX code that may be used:

/\ \/

say "Want to leave?" /\Escape opportunity because program was started \/

 /\automatically. \/

pull ans; if ans = 'Y' then exit /\Input in uppercase automatically \/

signal on SYNTAX /\Branch to syntax: if retcode ¬= ð. \/

p2 = 'ð' /\4th parameter required by QREXQ API. \/

p3 = "REXXLIB/BIRTHF" /\Database file containing names and birthdays. \/

say "Do you want to add more entries to your Birthday File? (Y/N)"

pull ans; if ans = 'Y' then do /\If User wants to add records... \/

p1 = 'P' /\First parameter required by QREXQ API. \/

bf. = '' /\Buffer to hold new records. \/

do forever /\Do not leave this loop until a valid answer \/

say "How many entries do you want to add?" /\ is received. \/

pull ans; if datatype(ans) = 'NUM' then leave /\Note free format: 2 \/

else say "Numeric value required: Please try again." /\clauses per line\/

end /\End forever loop. \/

do i = 1 to ans /\Repeat loop for every addition. \/

do forever /\Secondary loop to obtain name. \/

say 'Please give the first and last name of the person to be added'

parse pull name /\Parse, do not translate input to uppercase. \/

if words(name) = 2 then leave /\Two and only 2 names required. \/

else say'Two separate words are required: Please try again.'

end /\End forever loop. \/

do forever /\Secondary loop to obtain birthday. \/

say "Pse supply the person's birthday - (MMDD only)"

pull date /\Numeric data expected, 'parse' not involved. \/

mon = substr(date,1,2) /\First 2 characters are the month. \/

day = substr(date,3,2) /\Last 2 characters are the day. \/

if datatype(date) = 'NUM' & length(date) = 4 & day > ð &, /\Note \/

day < 32 & mon > ð & mon < 13 then leave /\2 lines per clause. \/

 else do

say "Input not valid - Input must be in the format MMDD"

say "(for example, ð214 for the 14nd of February)"

say "Please try again"

 end /\End else. \/

 end /\End forever. \/

bf.i = left(name,2ð)||left(mon'/'day,5) /\Format input record. \/

end /\End prompting loop. \/

do i = 1 to ans /\Place input records one by one on the \/

queue bf.i /\ External Data Queue. \/

 end

call 'CREAD' P1, P2, P3 /\Call ILE/C program as subrtn. to write records. \/

say p3 result /\Displays 'REXLIB/BIRTHF updated with your input'.\/

end /\End input loop. \/

/\ Now go and read the file so that the required records can be obtained. \/

p1 = 'A' /\First parameter required by QREXQ API. \/

call 'CREAD' p1, p2, p3 /\Call ILE/C program to read the file. \/

leap = ð /\Leap year switch set to off. \/

days = ð 31 59 9ð 12ð 151 181 212 243 273 3ð4 334 /\Cumulative number of days

each month for a normal year. \/

ref = date(d) /\Number of days so far this year. \/

yr = substr(date(s),1,4) /\Current year; i.e. 199ð. \/

if (yr // 4 = ð & yr // 1ðð ¬= ð) | yr // 4ðð = ð then /\Is this a leap year? \/

do /\If so... \/

days = ð 31 6ð 91 121 152 182 213 244 274 3ð5 335 /\Redefine cumulative

 Appendix G. Communication Between REXX/400 and ILE/C 195

number of days each month for a leap year. \/

leap = 1 /\Set leap year switch on. \/

end

bf. = ''; j = 1 /\Initialize compound variable bf. to hold the

records we are interested in and j as a qualifier

 for bf. \/

do queued() /\Repeat loop for number of entries in queue. \/

parse pull rec /\Pull a record from the queue - no uppercase \/

 /\ translation. \/

bdat = subword(rec,3,1) /\Birthdate is third word in record (MM/DD). \/

bdatd = subword(days,substr(bdat,1,2),1) + substr(bdat,4,2) /\Calculate the

number of days from the beginning of the year. \/

if ref - leap > 358 & bdatd < 7 then bdatd = bdatd + 365 + leap /\Make

provision for a year end \/

if bdatd >= ref & bdatd <= ref+7 then /\Is birthday within 7 days from now? \/

 do /\If so... \/

bf.j = rec /\Place records in successive elements of bf. \/

j = j + 1 /\Step bf.'s qualifier. \/

end /\End simple do-loop. \/

end /\End queued() do-loop. \/

If bf.1 = '' then /\If first element of bf. is still empty, \/

say "There are no birthdays in the next 7 days." /\notify the User. \/

else do /\Else \/

say ' Birthdays today and for the next 7 days:' /\Display report heading. \/

do i = 1 to j - 1 /\Display qualifying \/

 say bf.i /\ records \/

end /\ one by one. \/

end /\End else loop. \/

return /\Exit program under normal conditions. \/

syntax: /\Subroutine to be run if interpreter raised \/

/\the syntax condition. Recovery actions taken here\/

/\will depend on how the ILE/C program is coded \/

/\In this example the User is notified and a \/

/\graceful exit is made. \/

say "The ILE/C program experienced an unknown error condition."

say "Activities are ended."

exit

The following is an example of the ILE/C code that may be used:

/\\\/

/\This program receives the following parameters from the BDTE REXX pgm: \/

/\1. An 'A' if it must read a file or a 'P' if it must write to a file \/

/\2. A '1' if data must be added to the head of the Q; a 'ð' for all others \/

/\3. The name of the file member concerned \/

/\\\/

 #include <stdio.h>

 #include <string.h>

typedef struct /\ RXSTRING structure definition. \/

{ char \ rxstrptr ; /\ Pointer to data. \/

unsigned long rxstrlen ; /\ Length of data. \/

} RXSTRING ; \/

typedef struct shvnode /\ Shared V.P request block def. \/

{ struct shvnode \shvnext; /\ Pointer to the next block. \/

RXSTRING shvname; /\ Pointer to the name buffer. \/

196 REXX/400 Programmer’s Guide V4R1

RXSTRING shvvalue; /\ Pointer to the value buffer. \/

unsigned char shvcode; /\ Sub-function code for this block. \/

unsigned char shvret; /\ Individual Return Code Flag. \/

 } SHVBLOCK;

#define SHVEXTFN ðxð9 /\ Set exit code (value for RESULT). \/

#define SHVCLEAN ðxðð /\ The request ran OK (Return code). \/

#define BUFLEN 26 /\ Expected length of records + 1. \/

#define DO_FOREVER for(;;) /\ Just for fun. \/

#pragma linkage(QREXVAR,OS) /\ Pragma for the V.P API. \/

#pragma linkage(QREXQ,OS) /\ Pragma for the Ext. Data Q. API. \/

RXSTRING empty_str = {(char \)ð,ðL}; /\ Used when no value is needed. \/

void QREXVAR(SHVBLOCK \, short int \); /\ Prototype for V.P API. \/

void QREXQ(char \, char \,unsigned long int \, char \, unsigned char \);

RXSTRING crte_rx(char \); /\ Prototype to create a RXSTRING. \/

short int result_via_vp(char \); /\ Prototype to create a req. block. \/

main(int argc, char \argv[])

{ RXSTRING \args; /\ Points to parameters received. \/

short int \errflag; /\ Points to error flag. \/

char line[BUFLEN]; /\ Buffer to hold file records. \/

unsigned long int rec_len; /\ Length of record read from file. \/

unsigned char ret_cde; /\ Space for QREXQ's return code. \/

FILE \fle; /\ File pointer. \/

char fname[35]; /\ Maximum length for qualified fname.\/

unsigned char function; /\ Read or write indicator. \/

unsigned char flag; /\ Data to head or tail of Q. \/

/\Note that only the arguments to be used are received. \/

args = (RXSTRING \) argv[1]; /\ Receive parameters passed. \/

errflag = (short int \) argv[4]; /\ Pointer to interpreter's err flag\/

function = \(args[1].rxstrptr); /\ Must we read or write. \/

flag = \(args[1].rxstrptr); /\ Data to head or tail of Q. \/

if (flag == 'ð') /\ Change to acceptable \/

flag = '\ð'; /\ format. \/

memcpy(fname,args[2].rxstrptr,args[2].rxstrlen); /\ Get file name. \/

fname[args[2].rxstrlen] = '\ð'; /\ Add null character to file name. \/

if (function == 'A') /\ If file read is requested ... \/

{ if ((fle=fopen(fname,"rb, type=record")) == NULL) /\ Open file. \/

{ printf("Cannot open input file\n"); /\ Notify User if \/

return; /\ problems are encountered. \/

} /\ End fopen-if. \/

DO_FOREVER /\ Keep on reading to EOF. \/

{ rec_len = fread(line,1,BUFLEN,fle); /\ Record read into 'line'.\/

if (!feof(fle)) /\ If not yet EOF, place 'line' on \/

{ QREXQ(&function, line, &rec_len, &flag, &ret_cde); /\ the Q.\/

if (ret_cde != ð) /\ If bad return code from QREXQ, \/

{ fclose(fle); /\ close file. \/

printf("QREXQ return code = %c : Push operation failed\n",

ret_cde); /\ Notify User. \/

return; /\ Return to REXX. \/

} /\ End bad-return-code-if \/

} /\ End EOF if \/

else /\ If EOF is reached ... \/

{ fclose(fle); /\ close file. \/

 Appendix G. Communication Between REXX/400 and ILE/C 197

return; /\ Return to REXX. \/

} /\ End else. \/

} /\ End DO_FOREVER. \/

} /\ End function = 'A'. \/

else if (function == 'P') /\If file write operation is requested\/

{ if ((fle = fopen(fname, "ab, type=record")) == NULL) /\ Open file \/

{ printf("Cannot open output file\n"); /\ Notify User if \/

return; /\ problems are encountered. \/

} /\ End fopen-if. \/

DO_FOREVER /\ Else do until buffer is empty. \/

{ rec_len = BUFLEN; /\ Expected record length. \/

QREXQ(&function, line, &rec_len, &flag, &ret_cde); /\ Pull rec.\/

if (ret_cde == ð) /\ If successful ... \/

fwrite(line, rec_len, 1, fle); /\ Write record in 'line' \/

else if (ret_cde == 2) /\ Q became empty \/

{ \errflag = result_via_vp("updated with your input");

fclose(fle); /\ Close the file. \/

return; /\ Return to REXX. \/

} /\ End else-if \/

else /\ If errors were encountered \/

 /\ \/

{ fclose(fle); /\ Close file. \/

printf("QREXQ return code = %c : Pull operation failed\n",

ret_cde); /\ Notify User. \/

return; /\ Return to REXX. \/

} /\ End else \/

} /\ end DO_FOREVER \/

} /\ end function = 'P' \/

} /\ end main \/

/\The next subroutine builds a request block to place a value in the REXX \/

/\variable RESULT and submits the request to QREXVAR. \/

short int result_via_vp(char \result)

{ SHVBLOCK blk; /\ Name the request block. \/

short int expected_rc = SHVCLEAN; /\ Set expected return code. \/

/\Now built the request block ... \/

blk.shvnext = (SHVBLOCK \)ð; /\ This is the only block \/

blk.shvname = empty_str; /\ RESULT automatically set. \/

blk.shvvalue= crte_rx(result); /\ RXSTRING format needed. \/

blk.shvcode = SHVEXTFN; /\ Sub-function request. \/

blk.shvret = SHVCLEAN; /\ Expected return code. \/

QREXVAR(&blk,&expected_rc); /\ Call the API \/

return expected_rc; /\ return Return code \/

/\If API was not successful, a nonzero code will be returned to errflag. \/

 }

/\The next subroutine creates a RXSTRING from the value its arg is pointed to\/

RXSTRING crte_rx(char \str)

{ RXSTRING rx; /\Name a RXSTRING structure. \/

rx.rxstrlen = strlen(str); /\Store its length \/

rx.rxstrptr = str; /\and the pointer to the string. \/

return rx; /\Return the RXSTRING. \/

 }

198 REXX/400 Programmer’s Guide V4R1

Appendix H. Communication Between REXX/400 and Other
Languages

Using the REXX External Data Queue API
The REXX external data queue API (QREXQ) can also be used by programs that
are not written in ILE/C. In this section, sample programs in OPM (Original
Program Module) RPG and OPM COBOL are used to illustrate the use of QREXQ.

For more information about QREXQ, see the REXX/400 Reference.

Pushing Data from RPG into the Queue
RPGPSHQ is a small RPG program which reads records from the file BIRTHF, and
pushes them into the REXX external data queue through QREXQ.

The following is the source listing of RPGPSHQ:

H\ This RPG program reads records from a file and then use

 H\ QREXQ to pushes the data into REXX external data queue.

 H\

FBIRTHF IF E DISK

I\ This file only has two fields : NAME and BDATE

 I\

 IBFLDS DS

I B 1 4ðBUFLEN

I B 5 6ðFLAG

I B 7 8ðRCODE

 C\

 C READ BIRTHF 9ð

 C \IN9ð DOWEQ'ð'

 C MOVELNAME BUF 25

 C MOVE BDATE BUF

C MOVE 'A' FUNT 1 \ Push into q

 C Z-ADD25 BUFLEN

 C Z-ADDð FLAG \ FIFO

 C\ Z-ADD1 FLAG \ LIFO

 C Z-ADDð RCODE

 C\

 C CALL 'QREXQ'

 C PARM FUNT

 C PARM BUF

 C PARM BUFLEN

 C PARM FLAG

 C PARM RCODE

 C\

 C READ BIRTHF 9ð

 C END

 C\

C SETON LR

 C\

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 Copyright IBM Corp. 1997 199

This is the DDS of the file BIRTHF:

 A R BIRTHREC

A NAME 2ð COLHDG('Name')

A BDATE 5 COLHDG('Date MM/DD')

The logic of this program is very simple. After reading a record from the file, it sets
up the parameter list and then pushes the record into the REXX external data
queue using QREXQ. This process is repeated until all records are pushed into the
queue.

However, it should be noted that the buffer length (3rd parameter), the operation
flag (4th parameter), and the return code (5th parameter) should be defined as
binary fields in the Input specification.

Note: The REXX program in “Example Using the REXX External Data Queue” on
page 194 can be changed to call RPGPSHQ instead of the ILE/C program CREAD
to read the BIRTHF file and place its contents in the REXX external data queue.

Updating the File from the Queue by RPG
RPGUPD uses QREXQ to pull data from the REXX external data queue, and then
updates the BIRTHF file according to the action code which is added to the end of
each pulled data record.

The logic of this RPG program is as follows:

1. Use QREXQ to pull the first record from the queue, which contains the number
of updated entries in the queue.

2. Use QREXQ to pull a data line from the REXX queue

3. Look at the action code which is added to the end of each data record, and
then add, delete, or write the record back to the file.

4. Repeat steps 2 & 3 until all updated entries are pulled out.

The following is the source listing of RPGPUPD:

H\ This RPG program uses the data in the REXX external data

H\ queue to update the BIRTHF file.

 F\

FBIRTHF UF E DISK A

I\ This file only has two fields : NAME and BDATE

 I\

 IBFLDS DS

I B 1 4ðBUFLEN

I B 5 6ðFLAG

I B 7 8ðRCODE

 IBUF DS

 I 1 2ð NWNAME

 I 21 25 NWDATE

 I 26 26 ACTCDE

 C\

C Z-ADDð FLAG \ Not used

C Z-ADDð RCODE \ Reset RCODE

C MOVE 'P' FUNT 1 \ Pull from q

 C\

 C Z-ADD1ð BUFLEN

 C CALL 'QREXQ'

200 REXX/400 Programmer’s Guide V4R1

 C PARM FUNT

 C PARM ENTNOA 1ð

 C PARM BUFLEN

 C PARM FLAG

 C PARM RCODE

 C\

C MOVELENTNOA ENTNO 4ð \ Ent. to pull

 C\

 C DO ENTNO

C Z-ADD3ð BUFLEN \ Set buf length

 C CALL 'QREXQ'

 C PARM FUNT

 C PARM BUF

 C PARM BUFLEN

 C PARM FLAG

 C PARM RCODE

 C\

C ACTCDE IFEQ 'A' \ If add

 C MOVE NWNAME NAME

 C MOVE NWDATE BDATE

 C WRITEBIRTHREC

 C ELSE

 C READ BIRTHF 9ð

C ACTCDE IFEQ 'D' \ If delete

 C DELETBIRTHREC

 C ELSE \ Otherwise

 C MOVE NWNAME NAME

 C MOVE NWDATE BDATE

 C UPDATBIRTHREC

 C END

 C END

 C MOVE \BLANK ACTCDE

 C\

 C END

 C\

C SETON LR

 C\

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

Note: Since the buffer length (3rd parameter) is changed by QREXQ to the actual
length of the data being placed in the data buffer after each call, this parameter
should be reset each time before QREXQ is called.

Moreover, it is a good practice to set a larger buffer length for the QREXQ call than
you expect, and then only use the number of bytes indicated by the buffer length
parameter.

The following is another example of a REXX program which prompts the users for
changes that should be made to the BIRTHF file. It calls RPGPSHQ to read the
file and put it into the REXX external data queue, then later calls RPGUPD to
update the file.

 Appendix H. Communication Between REXX/400 and Other Languages 201

/\\/

/\ REXX program which allows the user to change or add \/

/\ records to the data file, BIRTHF. It calls RPGPSHQ program \/

/\ to get all the data from the file, and then uses RPGUPD to \/

/\ update the file from the REXX external data queue. \/

/\ \/

/\\/

/\ Setup ERROR, FAILURE, and SYNTAX condition traps.\/

signal on error name command_error

signal on failure name command_error

signal on syntax name syntax_error

/\ Save number of existing entries in the queue.\/

prev_entries = queued()

/\ Create a new buffer for this program.\/

bufno = ð

'ADDREXBUF BUFFER(&bufno)'

/\ Use RPGPSHQ to get all records into the queue.\/

'CALL RPGPSHQ'

/\ Put all queue entries into compound variable DATA.\/

total_recs = queued() - prev_entries

do count = 1 to total_recs

 pull data.count

say count') 'data.count

end

/\ Prompt for changing or deleting records \/

do until answer = 'N'

say 'Do you want to change/delete any record? (Y/N)'

parse upper linein answer

if answer = 'Y' then do

do until rec_no = ''

say 'Change/delete which record?'

parse linein rec_no

if rec_no ¬= '' then

 call change_rec

 end

 end

end

/\ Prompt for adding new records.\/

answer = ''

do until answer = 'N'

say 'Do you want to add a new record? (Y/N)'

parse upper linein answer

if answer = 'Y' then do

say 'Please enter Name","Birthday(mm/dd):'

parse upper linein name ',' birth_date .

total_recs = total_recs +1

data.total_recs = overlay(name, data.total_recs,1,2ð)

data.total_recs = overlay(birth_date,data.total_recs,21,5)

/\ Add the action code 'A' to the end of data \/

data.total_recs = data.total_recs||'A'

 end

end

202 REXX/400 Programmer’s Guide V4R1

/\ Right-justified total_recs into a 4-byte field \/

lead_blanks = 4 - length(total_recs)

total_recs = copies(' ',lead_blanks)||total_recs

data.ð = total_recs

/\ Push records back to queue, starting from last record.\/

do count = total_recs to ð by -1

if data.count ¬= '' then

 queue data.count

end

/\ Call RPGUPD to update the file.\/

'CALL RPGUPD'

/\ Remove the buffer created.\/

'RMVREXBUF BUFFER(&bufno)'

/\ End of Program. \/

exit

/\\/

/\ change_rec: Change a record in the REXX queue \/

/\\/

change_rec:

if rec_no > total_recs then

say 'Record does not exist, please try again.'

 else do

say rec_no') ' data.rec_no

say 'Enter DELETE or changes: Name","Birthday(mm/dd)'

parse upper linein name ',' birth_date

if name = 'DELETE' then

/\ Add the action code 'D' to the end of data.\/

data.rec_no = data.rec_no||'D'

 else do

if name ¬= '' then

data.rec_no = overlay(name,data.rec_no,1,2ð)

if birth_date ¬= ' ' then

data.rec_no = overlay(birth_date,data.rec_no,21,5)

/\ Add the action code 'C' to the end of data.\/

data.rec_no = data.rec_no||'C'

 end

 end

return

/\\/

/\ command_error : ERROR & FAILURE condition trap \/

/\\/

command_error:

parse source system start srcmbr srcfile srclib

say 'Unexpected error at line 'sigl' of REXX program 'srcmbr',

' in 'srclib'/'srcfile'. The exception id is 'rc'.'

 'RMVREXBUF BUFFER(&bufno)'

 Appendix H. Communication Between REXX/400 and Other Languages 203

exit(rc)

/\\/

/\ syntax_error : Syntax condition trap \/

/\\/

syntax_error:

parse source system start srcmbr srcfile srclib

say 'Syntax error at line 'sigl' of REXX program 'srcmbr,

' in 'srclib'/'srcfile'. The error code is 'rc'.',

' The description of the error is :'

 say errortext(rc)

 'RMVREXBUF BUFFER(&bufno)'

exit(rc)

Pushing Data from COBOL into the Queue
CBLPSHQ is a simple COBOL program which has the same function as
RPGPSHQ in “Pushing Data from RPG into the Queue” on page 199. CBLPSHQ
reads records from the BIRTHF file, and then pushes them into the REXX external
data queue using QREXQ.

It should be noted that when defining the parameter list for QREXQ, the buffer
length (3rd parameter), the operation flag (4th parameter), and the return code (5th
parameter) should be defined as COMP-4 (for example, binary field).

This is the source listing of CBLPSHQ:

 PROCESS XREF APOST.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLPSHQ.

 AUTHOR. ITSC-ROCHESTER.

 \\

 \ \

\ PROGRAM FOR USING QREXQ TO PUSH DATA INTO REXX EXTERNAL \

 \ DATA QUEUE. \

 \ \

 \\

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS4ðð.

 OBJECT-COMPUTER. IBM-AS4ðð.

 \

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT BIRTH-FILE

 ASSIGN TO DATABASE-BIRTHF

 ORGANIZATION IS SEQUENTIAL.

 /

 DATA DIVISION.

 FILE SECTION.

 FD BIRTH-FILE

LABEL RECORDS ARE OMITTED.

 ð1 BIRTH-REC.

\ This file only has two fields : NAME and BDATE.

COPY DDS-ALL-FORMATS OF BIRTHF.

 /

204 REXX/400 Programmer’s Guide V4R1

 WORKING-STORAGE SECTION.

 ð1 PARM-LIST.

 ð5 FUNCTION-CODE PIC X.

 ð5 BUFFER.

 1ð NAME PIC X(2ð).

 1ð BDATE PIC X(5).

ð5 BUF-LENGTH PIC 9(5) COMP-4.

 ð5 FLAG PIC 99 COMP-4.

 88 FIFO VALUE 'ð'.

 88 LIFO VALUE '1'.

 ð5 RETURN-CODE PIC 99 COMP-4.

 \

 ð1 STATUS-FLAG PIC X.

 88 END-OF-FILE VALUE 'Y'.

 /

 PROCEDURE DIVISION.

 \\\

 MAINLINE-ROUTINE.

 \\\

 OPEN INPUT BIRTH-FILE.

 \

 PERFORM READ-FILE.

 PERFORM PUSH-INTO-QUEUE

 UNTIL END-OF-FILE.

 \

 END-PGM.

 CLOSE BIRTH-FILE.

 STOP RUN.

 \

 /\\

 PUSH-INTO-QUEUE.

 \\\

 \

 MOVE 'A' TO FUNCTION-CODE.

 MOVE CORR BIRTHREC TO BUFFER.

 MOVE 25 TO BUF-LENGTH.

 SET FIFO TO TRUE.

 MOVE ZEROS TO RETURN_CODE.

 \

 \ When queuing data into the REXX queue

 \ SET LIFO TO TRUE.

 \

 CALL 'QREXQ' USING FUNCTION-CODE

BUFFER BUF-LENGTH FLAG RETURN-CODE.

 \

 PERFORM READ-FILE.

 /\\

 READ-FILE.

 \\\

 \

READ BIRTH-FILE AT END

 SET END-OF-FILE TO TRUE.

 \

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 Appendix H. Communication Between REXX/400 and Other Languages 205

Overriding STDIN and STDOUT
In a REXX program, the display is usually used as the input and output device. In
fact, you can also have direct input from a database file and output to a spooled
output file in a REXX program. All these can be done by using the CL override
commands to override the standard streams STDIN and STDOUT.

DSPUNUSE is an example of a REXX program which displays a list of objects in a
library that have not been used after a certain specified date. It uses the
DSPOBJD command to output all the objects in the library to a database file
(OBJDPF), and then select those expired objects for display or print out.

Because all the fields in OBJDPF are not needed, STDIN is overridden to a logical
file (OBJDLF) of this physical file, in which only those fields we are interested in are
selected. If you are working with packed decimal fields in a file, you can also make
use of the logical file to do the conversion for you instead of converting the packed
fields in the REXX program.

Similarly, DSPUNUSE produces output to a printer file by using the OVRPRTF
command to override STDOUT to QPRINT.

Because of the way standard streams are opened and committed to the REXX
program call, it should be noted that these CL override commands must be issued
before the first use of each stream in the REXX program, and these overrides
cannot be removed until that call to the interpreter ends. In other words, STDIN
must be overridden before the first PULL instruction that tries to read from the
display and before any PARSE LINEIN instructions, and STDOUT must be
overridden before any SAY instructions are run. If this causes a problem, the
override commands and the corresponding SAY or PARSE LINEIN statements can
be included in a separate REXX program, which will then be called using
STRREXPRC or as a command from the main REXX program.

Moreover, you should also be aware that the program will not work properly when
using interactive trace, because STDIN cannot be overridden when a REXX
program is being interactively traced.

For more information about STDIN and STDOUT, see the REXX/400 Reference.

206 REXX/400 Programmer’s Guide V4R1

The following is the REXX program DSPUNUSE:

/\\/

/\ REXX program as the CPP of DSPUNUSE command. \/

/\ DSPUNUSE displays a list of unused objects in a library after \/

/\ a particular date. \/

/\ \/

/\ Parameter passed: \/

/\ \/

/\ Lib : Library name \/

/\ Type : Object Type \/

/\ Date : Last used date (yymmdd) \/

/\ Output : \PRINT - Output to listing \/

/\ \ - Output to display \/

/\ \/

/\\/

/\ Parse out the library value from the CDO 'LIBRARY' keyword.\/

arg 'LIBRARY('lib')'

/\ Parse out the type value from the CDO 'TYPE' keyword.\/

arg 'TYPE('type')'

/\ Parse out the last_date value from the CDO 'LASTUSE' keyword.\/

arg 'LASTUSE('last_used_date')'

/\ Parse out the output type value from the CDO 'OUTPUT' keyword.\/

arg 'OUTPUT('output')'

/\ Check if the library exists.\/

'CHKOBJ OBJ(QSYS/'lib') OBJTYPE(\LIB)'

if pos('CPF98',rc) ¬= ð then do

message = 'Library:' lib 'not found'

 'SNDUSRMSG MSG(&message)'

 exit(rc)

end

/\ Setup ERROR, FAILURE, and SYNTAX condition traps.\/

signal on error name command_error

signal on failure name command_error

signal on syntax name syntax_error

/\ Put all the objects information into a file.\/

'DSPOBJD OBJ('lib'/\all) OBJTYPE(\ALL) DETAIL(\FULL)',

'OUTPUT(\OUTFILE) OUTFILE(QGPL/OBJDPF)'

/\ Get the number of records in QGPL/OBJDPF.\/

reccnt = ð

'RTVMBRD FILE(QGPL/OBJDPF) MBR(\FIRST) NBRCURRCD(&reccnt)'

/\ Override STDIN to the logical file QGPL/OBJDLF. \/

/\ This must be done before the first use of STDIN, \/

/\ for example, PARSE LINEIN, or PULL. \/

'OVRDBF FILE(STDIN) TOFILE(QGPL/OBJDLF)'

/\ Select output device - default is display. \/

/\ This must be done before the first use of STDOUT, for \/

 Appendix H. Communication Between REXX/400 and Other Languages 207

/\ example SAY \/

if output = '\PRINT' then

'OVRPRTF FILE(STDOUT) TOFILE(QPRINT)'

/\ Set variables to initial values.\/

line_count = 24

page_no = ð

rec_count = ð

detail_line = ''

/\ Parse out the record from the queue into the following variables.\/

do reccnt

 parse linein obj_name , /\ Object name. \/

11 obj_type , /\ Object type. \/

19 obj_atb , /\ Object attribute.\/

29 used_mdy , /\ Last used date. \/

used_date = substr(used_mdy,5,2)||substr(used_mdy,1,4)

if ((type = '\ALL') | (obj_type = type)) &,

(used_date < last_used_date) then

 call write_line

end

/\ Write total number of objects listed.\/

call write_total

/\ End Program.\/

Exit

/\\/

/\ write_line : write a line of the selected object \/

/\\/

write_line:

/\ Check for new page.\/

if line_count ¬< 24 then do

 call write_heading

 end

line_count = line_count + 1

rec_count = rec_count + 1

detail_line = overlay(obj_name,detail_line,4,1ð)

detail_line = overlay(obj_type,detail_line,19,8)

detail_line = overlay(obj_atb,detail_line,34,1ð)

detail_line = overlay(used_date,detail_line,54,6)

 say detail_line

return

/\\/

/\ write_heading : write a new page heading \/

/\\/

write_heading:

page_no = page_no + 1

line_count = 3

 say,

' Display Unused Objects Page : 'page_no

208 REXX/400 Programmer’s Guide V4R1

 say,

' Object name Object Type Object Attribute Last Used Date'

 say,

' ----------- ----------- ---------------- --------------'

return

/\\/

/\ write_total : write the total no. of object listed \/

/\\/

write_total:

say ' '

say rec_count' objects with type 'type' in library 'lib' were',

' unused since 'last_used_date'.'

say ' '

return

/\\/

/\ command_error : ERROR & FAILURE condition trap \/

/\\/

command_error:

parse source system start srcmbr srcfile srclib

say 'Unexpected error at line 'sigl' of REXX program 'srcmbr,

' in 'srclib'/'srcfile'. The exception id is 'rc'.'

exit(rc)

/\\/

/\ syntax_error : Syntax condition trap \/

/\\/

syntax_error:

parse source system start srcmbr srcfile srclib

say 'Syntax error at line 'sigl' of REXX program 'srcmbr,

' in 'srclib'/'srcfile'. The error code is 'rc'.',

' The description of the error is :'

 say errortext(rc)

exit(rc)

The following is the CDO which calls this REXX program:

/\\/

/\ \/

/\ DSPUNUSE - Display unused objects in a library after a \/

/\ particular date. \/

/\ \/

/\ The CPP is the REXX program DSPUNUSE. \/

/\ \/

/\\/

CMD PROMPT('Display Unused Objects')

PARM KWD(LIBRARY) TYPE(\NAME) LEN(1ð) MIN(1) +

 PROMPT('Library name')

 Appendix H. Communication Between REXX/400 and Other Languages 209

PARM KWD(TYPE) TYPE(\CHAR) LEN(1ð) DFT(\ALL) +

 PROMPT('Object type')

PARM KWD(LASTUSE) TYPE(\CHAR) LEN(6) PROMPT('Last +

 Used Date (yymmdd)')

PARM KWD(OUTPUT) TYPE(\CHAR) LEN(6) RSTD(\YES) +

DFT(\) SPCVAL((\) (\PRINT)) PROMPT('Output +

 Type')

Note: *REXX should be specified as the “program to process command” when
creating this command.

210 REXX/400 Programmer’s Guide V4R1

Appendix I. String Manipulation in REXX versus CL

REXX provides extensive capabilities for processing character strings through its
built-in functions and parsing techniques. In this section, we will look at some
common examples of string manipulation in CL program, and compare it with those
written in REXX.

Searching for a String Pattern
The following CL statements find the first sentence, which is delimited by a period,
in a 50-character variable &INPUT and place any remaining text in the variable
&REMAINDER:

DCL &INPUT \CHAR LEN(5ð)

DCL &REMAINDER \CHAR LEN(5ð)

DCL &X \DEC LEN(2 ð) VALUE(ð1)

DCL &L \DEC LEN(2 ð) /\ REMAINING LENGTH \/

 :

 :

SCAN: IF ((%SUBSTRING(&INPUT &X 1) \NE '.') \AND +

(&X \LT 5ð)) THEN(DO)

 CHGVAR &X (&X+1)

 GOTO SCAN

 ENDDO

CHGVAR VAR(&L) VALUE(5ð-&X)

CHGVAR VAR(&X) VALUE(&X+1)

CHGVAR VAR(&REMAINDER) VALUE(%SUBSTRING(&INPUT &X &L))

This is the REXX statement that performs the same function:

parse var input . '.' remainder

In fact, this is just a simple example of finding a single character pattern in a string.
If we are searching for a literal pattern that consists of several characters (for
example, 'QPGMR'), the CL program will become much more complex, because it
treats the whole string as an array of single characters. However, the only changes
for the REXX statement are as follows:

parse var input . 'QPGMR' remainder

Extracting Words from a String
The following CL statements shows how three words can be extracted, with leading
and trailing blanks removed, from a 30-characters field, and assign them to the
variables &LIB, &FILE, and &MBR, respectively.

 Copyright IBM Corp. 1997 211

DCL &INPUT \CHAR LEN(3ð)

DCL &LIB \CHAR LEN(1ð)

DCL &FILE \CHAR LEN(1ð)

DCL &MBR \CHAR LEN(1ð)

DCL &S \DEC LEN(2 ð) /\ Starting position. \/

DCL &E \DEC LEN(2 ð) /\ Ending position. \/

DCL &L \DEC LEN(2 ð) /\ Length of parameter.\/

 :

 :

CHGVAR &S 1 /\ Remove leading blanks for &LIB.\/

LIBSTR: IF (%SST(&LIB &S 1) \EQ ' ') THEN(DO)

CHGVAR &S (&S+1)

 GOTO LIBSTR

 ENDDO

CHGVAR &E (&S+1) /\ Find end of &LIB.\/

LIBEND: IF (%SST(&LIB &E 1) \NE ' ') THEN(DO)

CHGVAR &E (&E+1)

 GOTO LIBEND

 ENDDO

CHGVAR &L (&E-&S)

CHGVAR &LIB (%SST(&LIB &S &L))

CHGVAR &S (&E+1) /\ Remove leading blanks for &FILE.\/

FILSTR: IF (%SST(&FILE &S 1) \EQ ' ') THEN(DO)

CHGVAR &S (&S+1)

 GOTO FILSTR

 ENDDO

CHGVAR &E (&S+1) /\ Find end of &FILE.\/

FILEND: IF (%SST(&FILE &E 1) \NE ' ') THEN(DO)

CHGVAR &E (&E+1)

 GOTO FILEND

 ENDDO

CHGVAR &L (&E-&S)

CHGVAR &FILE (%SST(&FILE &S &L))

CHGVAR &S (&E+1) /\ Remove leading blanks for &MBR.\/

MBRSTR: IF (%SST(&MBR &S 1) \EQ ' ') THEN(DO)

CHGVAR &S (&S+1)

 GOTO MBRSTR

 ENDDO

CHGVAR &E (&S+1) /\ Find end of &MBR.\/

MBREND: IF (%SST(&MBR &E 1) \NE ' ') THEN(DO)

CHGVAR &E (&E+1)

 GOTO MBREND

 ENDDO

CHGVAR &L (&E-&S)

CHGVAR &MBR (%SST(&MBR &S &L))

 :

 :

The following is the REXX statement that performs the same function:

 :

parse var input lib file mbr

 :

212 REXX/400 Programmer’s Guide V4R1

Concatenation with Numeric Variables
When trying to concatenate values in numeric variables with other character strings
using CL, the Change Variable (CHGVAR) command is used. This is because CL
supports the concatenation of character variables and character strings only.

The following CL example shows how several numeric and character variables can
be concatenated to produce the message below for a workstation operator:

Customer ABC COMPANY, Account Number 12345, is overdue by 4 days.

It assumes that the variables for the account number (&ACTNUM) and the overdue
days (&ODDAY) were declared as numeric variables.

DCL &MSG \CHAR LEN(5ð)

DCL &ODDAYA \CHAR LEN(3)

DCL &ACTNUMA \CHAR LEN(6)

 :

 :

 CHGVAR &ODDAYA &ODDAY

CHGVAR &ACTNUMA &ACTNUM

CHGVAR &MSG('Customer' \BCAT &CUSNAME \CAT +

', Account Number' \BCAT &ACTNUMA \CAT +

', is overdue by' \BCAT &ODDAYA \BCAT 'days.')

 :

 :

As REXX regards all data as character strings, it makes no difference when
concatenating numeric variables instead of character variables. This is the REXX
statement which prepares the same message:

 :

msg = 'Customer' cusname', Account Number' actnum', is overdue by',

 odday 'days.'

 :

From these examples, we can see that REXX is really a handy and powerful tool in
string manipulation. Moreover, as the syntax of the REXX clauses are simple and
the instructions are quite self-explanatory, it also helps to increase the readability
and maintainability of the programs.

The following is a command SBMCALL, which is designed to assist the users in
building a CALL command with parameters and then submit it to batch. A REXX
program and a CL program, which have the same functions, are developed to be
the CPP of this command. The reader can compare these two programs in their
techniques in string handling, and also their relative readability.

The way that parameters are passed to a REXX CPP is different from those to a
CL CPP, as shown below. Therefore, the logic of these two programs in retrieving
values from the passed parameters will be somewhat different.

If we type in the following command:

SBMCALL PGM(TESTLIB/PGMA) PARM(HELLO 'GOOD MORNING' 123)

The following character string will be passed to the REXX CPP:

PGM(TESTLIB/PGMA) PARM(HELLO 'GOOD MORNING' 123)

 Appendix I. String Manipulation in REXX versus CL 213

On the other hand, the following will be passed to a CL CPP:

 1 11

 ┌──────────┬──────────┐

 PGM │ PGMA │TESTLIB │

 └──────────┴──────────┘

 3 35 67

 ┌───┬──────────────┬──────────────┬───────────────┐

PARM │ 3 │HELLO │GOOD MORNING │123 │

 └─&─┴──────────────┴──────────────┴───────────────┘

 │

 │

A 2-byte binary value indicating the number of values

 passed.

Note: The SBMCALL command is changed from the BLDCALL command in
QUSRTOOL. The only difference is that a SBMJOB command is issued in the
CPP of SBMCALL, but this command is issued by the calling program of the
BLDCALL command.

This is the REXX CPP of SBMCALL:

/\\/

/\ REXX program as the CPP of SMBCALL command. \/

/\ SBMCALL build the parameter list for a CALL command and submit \/

/\ it to batch. \/

/\ \/

/\ Parameter passed: \/

/\ \/

/\ Pgm : Program name \/

/\ Parm_list : A list of parameters \/

/\ \/

/\\/

/\ Setup ERROR, FAILURE, and SYNTAX condition traps.\/

signal on error name command_error

signal on failure name command_error

/\ Parse out the program value from the CDO 'PGM' keyword.\/

arg 'PGM(' lib '/' pgm ')'

/\ Parse out the parameter list from the CDO 'PARM' keyword.\/

arg 'PARM(' parmlist ')'

/\ Format the program name for the CALL command.\/

if lib = '\LIBL'

then outpgm = pgm

else outpgm = lib'/'pgm

rqsdta = 'Call' outpgm ' PARM('

/\ Format the parameter list for the CALL command.\/

do while (parmlist ¬= ' ') & (length(rqsdta) < 256)

parse var parmlist parm parmlist

/\ Check if the parameter is in apostrophes (more than 1 word).\/

if left(parm,1) = "'" then do

outparm = parm

/\ Get the next word until closing apostrophe is found.\/

do while right(parm,1) ¬= "'"

214 REXX/400 Programmer’s Guide V4R1

parse var parmlist parm parmlist

outparm = outparm parm

 end

/\ Put a space after each parameter.\/

outparm = outparm' '

 end

/\ Add apostrophes to those unquoted parameters.\/

else outparm = "'"parm"' "

rqsdta = rqsdta||outparm

end

if length(rqsdta) ¬< 256 then do

msg = 'The RQSDTA area being assembled has exceeded 256 bytes'

'SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGTYPE(\ESCAPE) MSGDTA(&msg)'

end

else do

rqsdta = rqsdta||')'

 'SBMJOB RQSDTA(&rqsdta)'

end

/\ End of Program.\/

exit

/\\/

/\ command_error : ERROR & FAILURE condition trap \/

/\\/

command_error:

parse source system start srcmbr srcfile srclib

say 'Unexpected error at line 'sigl' of REXX program 'srcmbr,

' in 'srclib'/'srcfile'. The exception id is 'rc'.'

exit(rc)

This is the listing of CL program SBMCALL:

/\ CL Program as the CPP of SBMCALL. \/

 PGM PARM(&FULLPGM &LIST)

DCL &FULLPGM \CHAR LEN(2ð)

DCL &PGM \CHAR LEN(1ð)

DCL &LIB \CHAR LEN(1ð)

DCL &LIST \CHAR LEN(16ð2)

DCL &RQSDTA \CHAR LEN(256)

DCL &C \DEC LEN(3 ð) /\ Index to RQSDTA area.\/

DCL &W \DEC LEN(3 ð) /\ Index to Parm.\/

DCL &X \DEC LEN(3 ð) /\ Count of nbr.\/

DCL &Z \DEC LEN(5 ð) VALUE(3) /\ Parm loc.\/

DCL &P \DEC LEN(5 ð) VALUE(11) /\ Index to Pgm.\/

DCL &L \DEC LEN(5 ð) VALUE(11) /\ Index to Lib.\/

DCL &TEMP \CHAR LEN(5ð)

DCL &LSTCNT \DEC LEN(5 ð)

DCL &PARM \CHAR LEN(32)

MONMSG MSGID(CPFðððð) EXEC(GOTO ERROR)

/\ Extract &PGM and &LIB from &FULLPGM .\/

CHGVAR &PGM %SST(&FULLPGM 1 1ð)

CHGVAR &LIB %SST(&FULLPGM 11 1ð)

/\ Determine program name length \/

 Appendix I. String Manipulation in REXX versus CL 215

PGMLEN: CHGVAR &P (&P - 1)

IF (%SST(&PGM &P 1) \EQ ' ') GOTO PGMLEN

IF (&LIB \EQ '\LIBL') DO /\ LIBL specified \/

CHGVAR &RQSDTA ('CALL ' \CAT &PGM \TCAT ' PARM(')

/\ Next location in cmd work.\/

CHGVAR &C (12 + &P)

 GOTO PARMKWD

ENDDO /\ LIBL specified.\/

/\ Determine library name length.\/

LIBLEN: CHGVAR &L (&L - 1)

IF (%SST(&LIB &L 1) \EQ ' ') GOTO LIBLEN

CHGVAR &RQSDTA ('CALL ' \CAT &LIB \TCAT '/' \CAT +

&PGM \TCAT ' PARM(')

/\ Next location in cmd work.\/

CHGVAR &C (13 +&P + &L)

/\ Get the number of parameters in the list.\/

 PARMKWD: CHGVAR &LSTCNT %BINARY(&LIST 1 2)

/\ Begin loop for each parm.\/

 LOOP: CHGVAR &X (&X + 1) /\ Next parm.\/

CHGVAR &PARM %SST(&LIST &Z 32) /\ Extract parm.\/

IF (&PARM \EQ ' ') DO /\ Blank parm.\/

CHGVAR &W 1 /\ Provide 1 blank.\/

 GOTO BLDPARM

ENDDO /\ Blank parm.\/

 CHGVAR &W 33

/\ Determine parameter length.\/

 PARMLEN: CHGVAR &W (&W - 1)

IF (%SST(&PARM &W 1) \EQ ' ') GOTO PARMLEN

/\ Format the parameter list for the CALL command.\/

 BLDPARM: /\ Add apostrophes to parameter.\/

CHGVAR &TEMP ('''' \CAT %SST(&PARM 1 &W) \CAT '''')

/\ Check if length of parameter list exceeds 256.\/

CHGVAR &W (&W + 2) /\ Parm value len plus \/

 /\ apostrophes.\/

CHGVAR %SST(&RQSDTA &C &W) &TEMP

MONMSG MSGID(MCHð6ð3) EXEC(DO) /\ Exceeds 256.\/

RCVMSG MSGTYPE(\EXCP) /\ Remove MCH message.\/

SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGTYPE(\ESCAPE) +

MSGDTA('The RQSDTA area being assembled +

has exceeded 256 bytes')

ENDDO /\ Exceeds 256.\/

/\ Next loc in cmd work. \/

CHGVAR &C (&C + &W + 2)

/\ Increase for next parm.\/

CHGVAR &Z (&Z + 32)

/\ Loop back until all parms are processed.\/

 TESTLOOP: IF (&X \LT &LSTCNT) GOTO LOOP /\ Loop back.\/

/\ Begin the end of all lists processing.\/

CHGVAR &C (&C - 2) /\ No need for extra blanks.\/

CHGVAR %SST(&RQSDTA &C 1) ')' /\ Final right paren.\/

SUBMIT: SBMJOB RQSDTA(&RQSDTA)

 GOTO END

216 REXX/400 Programmer’s Guide V4R1

/\ Run time error handling.\/

 ERROR: SNDMSG MSG('Unexpected error in CL Program SBMCALL') +

 TOUSR(\REQUESTER)

 END: ENDPGM

The following is the CDO of the SBMCALL command:

/\\\/

/\ \/

/\ The Submit call command builds the command and the parameter \/

/\ list and then submits it to batch using SBMJOB command. \/

/\ \/

/\ The CPP is the REXX program SBMCALL. \/

/\ \/

/\\\/

CMD PROMPT('Submit Call command to Batch')

PARM KWD(PGM) TYPE(QUAL1) MIN(1) +

 PROMPT('Program name')

PARM KWD(PARM) TYPE(\CHAR) MIN(1) MAX(5ð) +

PROMPT('Parameters (32 or less)')

QUAL1: QUAL TYPE(\NAME) LEN(1ð) EXPR(\YES)

QUAL TYPE(\NAME) LEN(1ð) DFT(\LIBL) SPCVAL(\LIBL) +

EXPR(\YES) PROMPT('Library name')

Note: If the REXX program is used as the CPP of SBMCALL, *REXX should be
specified as the ‘Program to process command’ when creating this command.

 Appendix I. String Manipulation in REXX versus CL 217

218 REXX/400 Programmer’s Guide V4R1

 Glossary

A
absolute positional pattern . The part of a parsing
template that allows a string to be split by the
specification of numeric positions. A positional pattern
has no sign or has an equal sign.

abuttal operator . When two terms in an expression
are adjacent and are not separated by an operator, they
are said to abut. The effect of this operation is that the
two terms are concatenated without a blank.

arithmetic operator . An operator used to perform
arithmetic operations on character strings that are valid
numbers. The arithmetic operators include addition (+),
subtraction (-), multiplication (*), exponentiation (**),
division (/), integer division (%), remainder (//), prefix +
and prefix -.

array . An arrangement of data in one or more
dimensions, such as a list, a table, or a
multidimensional arrangement of items. Arrays are
implemented using compound symbols.

B
binary string . A literal string expressed using a binary
(base 2) representation of a value. The binary
representation is a sequence of zero or more binary
digits (the characters 0 or 1), enclosed in quotation
marks and followed by the character b.

bit . A contraction of binary digit. Either of the binary
digits, 0 or 1. Compare with byte.

Boolean operator . An operator each of whose
operands and whose result take one of two values (0 or
1).

byte . (1) The smallest unit of storage that can be
addressed directly. (2) A group of 8 adjacent bits. In
the EBCDIC coding system, 1 byte can represent a
character. In the double-byte coding system, 2 bytes
represent a character.

C
CCSID. See coded character set identifier (CCSID).

character . Any letter, number, or other symbol in the
data character set that is part of the organization,
control, or representation of data.

character format . A format that is used in the REXX
conversion functions to indicate that data is in a textual
form as opposed to machine-readable form.

CL. See control language (CL).

C language . A language used to develop application
programs in compact, efficient code that can be run on
different types of computers with minimal change.

clause . The fundamental grouping of REXX syntax. A
clause is composed of zero or more blanks, a sequence
of tokens, zero or more blanks, and the semicolon
delimiter.

coded character set identifier (CCSID) . A 16-bit
number identifying a specific set of encoding scheme
identifiers, character set identifiers, code page
identifiers, and other relevant information that uniquely
identifies the coded graphic character representation
used.

compound symbol . A symbol that permits the
substitution of variables within its name, when referred
to. A compound symbol contains at least one period,
and at least two other characters. It cannot start with a
digit or period, and if there is only one period in the
compound symbol, it cannot be the last character. The
compound symbol begins with a stem (that part of the
symbol up to and including the first period). The stem
is followed by the tail (the parts of the name, delimited
by periods, that are constant symbols, simple symbols,
or null). Compound symbols allow the construction of
arrays, associative tables, lists, and so on.

computing environment . Type of computer system.
The AS/400 system together with OS/400 software is
one computing environment. The Personal System/2*
(PS/2*) together with OS/2 is another computing
environment.

condition . A specific event, or state, that can be
trapped by the REXX CALL ON or SIGNAL ON
instruction.

condition trap . The method by which the explicit flow
of processing in a REXX program can be modified.
Condition traps are enabled or disabled using the ON or
OFF subkeywords of the CALL and SIGNAL
instructions.

control language (CL) . The set of all commands with
which a user requests system functions.

control language (CL) program . A program that is
created from source statements consisting entirely of
control language commands.

 Copyright IBM Corp. 1997 219

control language (CL) variable . A program variable
that is declared in a control language program and is
available only to the CL program.

control structure . A REXX instruction that determines
if, when and how often part of a program gets
processed.

controlled repetitive loop . A repetitive DO loop in
which the repetitive phrase specifies a control variable.
The variable is given an initial value before the first run
of the instruction list and is then stepped (by adding the
result of an optional expression) before the second and
subsequent times that the instruction list is run.

D
derived name . The stem of the symbol, in uppercase,
followed by the tail in which all simple symbols have
been replaced by their value. It is also the default value
of a compound symbol.

double-byte character set (DBCS) . A set of
characters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols that can be
represented by 256 code points, require double-byte
character sets. Because each character requires 2
bytes, the typing, displaying, and printing of DBCS
characters requires hardware and programs that
support DBCS. Four double-byte character sets are
supported by the system: Japanese, Korean, Simplified
Chinese, and Traditional Chinese. Contrast with
single-byte character set.

E
embedded blank . A space between characters within
a unit of data.

execute . To perform the actions specified by a
program or a portion of a program (to carry out an
instruction).

extended characters . Double-byte characters that are
stored in a DBCS font file, not in the hardware of a
DBCS-capable work station. When displaying or
printing extended characters, the work station receives
them from the DBCS font table under control of the
extended character processing function of the operating
system.

F
facility . A service provided by an operating system for
a particular purpose.

FIFO. See first-in first-out (FIFO).

first-in first-out (FIFO) . In REXX, a queuing technique
in which the next item to be retrieved is the item that
has been on the queue for the longest time. Contrast
with last-in first-out (LIFO).

fixed-point notation . A REXX number that is written
without exponentiation.

floating-point notation . A REXX number that is
written using exponentiation.

function . A series of instructions that a REXX
procedure calls to perform a specific task and to return
a value. The three types of routines that can be called
as functions are internal, built-in, and external.

function invocation . A term in an expression which
invokes a routine that carries out some procedure and
then returns a string.

H
halt . To cease or to stop, as in halt execution of your
program.

hexadecimal string . In REXX, any sequence of zero
or more hexadecimal digits (0-9, a-f, A-F), optionally
separated by blanks, delimited by apostrophes or
quotation marks, and immediately followed by the
symbol x or X.

I
imbedded blank . See embedded blank.

implied semicolon . In REXX, an assumed semicolon
at the end of each line.

invalid . Being logically unsupported and thereby not
allowed.

iteration . The process of repeatedly running a set of
computer instructions until some condition is satisfied.

220 REXX/400 Programmer’s Guide V4R1

K
keyword instruction . One or more clauses, the first of
which starts with a keyword that identifies the
instruction. Some keyword instructions affect the flow
of control, while others provide services to the
programmer. CALL, DO, and PARSE are examples of
keyword instructions.

L
last-in first-out (LIFO) . In REXX, a queuing technique
in which the next item to be retrieved is the item most
recently placed in the queue. Contrast with first-in
first-out (FIFO).

LIFO. See last-in first-out (LIFO). technique in which
the next item to be retrieved is the item most recently
placed in the queue. Contrast with first-in first-out
(FIFO).

literal string . In REXX, a sequence including any
characters that are delimited by apostrophes or
quotation marks.

M
mantissa . In floating-point format, the number that
precedes the E. The value represented is the product
of the mantissa and the power of 10 specified by the
exponent.

N
nonzero . A value that is not zero.

numeric pattern . A pattern that specifies, by column
number, how input data is to be parsed.

O
operand . In REXX, a term or expression that is
operated on by an operator.

operator precedence . In programming languages, an
order relationship that defines the sequence of the
application of operators within an expression.

P
placeholder . The symbol, consisting of a single period
in a REXX parsing template, that can be replaced by a
value while running a REXX program. A placeholder
has the same effect as a variable name, except that no
variable is set.

prefix operation . An operation on one value, specified
by writing by writing a prefix operator in front of the
value. The only prefix operators are + and -. Example:
Say -(1)

pseudo-CL variable . A variable used in CL
commands, whose name conforms to the CL
programming rules for variables, but actually refers to a
REXX variable. The name must begin with an
ampersand, but it is stripped off when determining the
name of the actual REXX variable that is to be used.
Pseudo-CL variables must be valid REXX variable
names and valid CL variable names.

Q
queue . A list of messages, jobs, file, or requests
waiting to be read, processed, printed, or distributed in
a predetermined order.

R
RC. A REXX special variable set to the return code
from any executed host command or subcommand. It
is also set to the return code when the conditions
ERROR, FAILURE, and SYNTAX are trapped.

reiterate or reiterated . To repeat a loop.

relative positional pattern . The part of a parsing
template that uses a plus or minus sign to indicate
movement relative to a previous pattern match.

REstructured eXtended eXecutor (REXX) language .
A general-purpose programming language, particularly
suitable for CL commands, or programs for personal
computing. Procedures and programs written in this
language can be interpreted by the REXX/400
interpreter. See also REXX/400.

RESULT. A REXX special variable that is set by the
RETURN instruction in a called routine. The RESULT
special variable is dropped if the called routine does not
return a value.

return code . For printer files, display files, and ICF
files, a value sent by the system to a program to
indicate the results of an operation by that program.

REXX language . See REstructured eXtended
eXecutor (REXX) language.

REXX/400. The Operating System/400 implementation
of the Systems Application Architecture Procedures
Language. REXX/400 is a programming language that
is supported by an interpreter provided as part of the
OS/400 licensed program. See also REstructured
eXtended eXecutor (REXX).

 Glossary 221

S
SAA . See Systems Application Architecture (SAA).

simple repetitive loop . A repetitive DO loop in which
the repetitive phrase is an expression that evaluates to
a count of iterations.

single-byte character set (SBCS) . A character set in
which each character is represented by a one-byte
code. Contrast with double-byte character set.

stem . That part of a compound symbol up to and
including the first period. It contains just one period,
which is the last character. It cannot start with a digit or
a period. A reference to a stem can also be used to
manipulate all variables sharing that stem.

step . To cause a computer to run one operation.

string . A sequence of elements of the same nature,
such as characters considered as a whole; for example,
character string, binary string, and hexadecimal string.

string concatenation . An operation that joins two
characters or strings in the order specified, forming one
string whose length is equal to the sum of the lengths of
the two characters or strings.

structured programming . Programming using blocks
of instructions where flow is controlled by instructions
such as DO, IF THEN ELSE, and SELECT, instead of
direct branching instructions.

subkeyword . A symbol reserved by the language
processor within the clause of individual instructions.
For example, the symbol FOREVER is a subkeyword of
the DO instruction.

subroutine . An internal, built-in, or external routine
called by the CALL instruction that may or may not
return a result string. If a subroutine returns a result
string, a subroutine can also be called by a function
call, in which case it is being called as a function.

swapped . When using the REXX REVERSE function,
pertaining to a process that exchanges the values in the
input string by reversing their positions.

Systems Application Architecture (SAA) . Pertaining
to an architecture defining a set of rules for designing a
common user interface, programming interface,
application programs, and communications support for
strategic operating systems such as the OS/2, OS/400,
VM, and MVS operating systems.

T
tail . The part of a compound symbol that follows the
stem. A tail can consist of constant symbols, simple
symbols, and periods.

term . A string, symbol, or function call contained within
a REXX expression.

terminate . To stop execution of a program.

terminating error . An error in a program that causes
its execution to stop.

token . The unit of low-level syntax from which REXX
clauses are built. Tokens include literal strings,
operator characters, and special characters.

traceback . Trace output that shows a failing
instruction when a syntax error occurs.

translation table . An object that contains a set of
hexadecimal characters used to translate one or more
characters of data. The table can be used for
translation of data being moved between the system
and a device. for example, data stored in one national
language character set may need to be displayed or
entered on display devices that support a different
national language character set. The table can also be
used to specify an alternative collating sequence or field
translation functions. The system-recognized identifier
for the object type is *TBL.

trap . In REXX, to recognize that a currently enabled
condition occurred and to perform the CALL or SIGNAL
instruction specified when the condition trap was
enabled.

trigger point . A threshold or boundary limit used in
the REXX FORMAT function.

U
uninitialized value . When a REXX variable is used
before a value is assigned to it, it is given an
uninitialized value, which is the same as its name, with
all alphabetic characters in uppercase.

V
variable . A name used to represent data whose value
can be changed while the program is running by
referring to the name of the variable.

variable pool interface . An application program
interface that allows programs written in other
languages to access variables being used by or
contained in an active REXX program.

222 REXX/400 Programmer’s Guide V4R1

W
word . A sequence of characters that do not include
any blanks. Words may be used as units for
manipulation during parsing and by many built-in
functions.

4
400/REXX. See REXX/400.

 Glossary 223

224 REXX/400 Programmer’s Guide V4R1

 Bibliography

The manuals below are listed with their full title and
base order number.

For more information about REXX, see:

REXX/400 Reference, SC41-5729

This manual provides detail on all REXX
instructions, functions, input and output, parsing,
and application interfaces.

You may want to refer to other AS/400 manuals for
more specific information about a particular topic. The
AS/400 Advanced Series Handbook, GA19-5486,
provides an introduction to the system characteristics
and software offerings available for the AS/400 system.

For information about operating the AS/400 system and
its display stations, see:

System Operation, SC41-4203.

This manual provides general information about
how to run the system, how to send and receive
messages, and use the display station function
keys.

For more information about programming, see:

Backup and Recovery, SC41-5304.

This manual provides information about the different
media available to save and protect system data.

DB2 for AS/400 Database Programming,
SC41-5701.

This manual provides a detailed discussion of the
AS/400 database structure, including information on
how to create, describe, and manipulate database
files.

Data Management, SC41-5710.

This manual provides information about using files
in application programs. Information includes:
spooling support, copying files, and tailoring a
system using double-byte data.

Security – Reference, SC41-5302.

This manual discusses general security concepts
and planning for security on the system. It also
includes information for all users about resource
security.

Work Management, SC41-5306.

This manual provides information about creating
and changing the work management environment,
working with system values, collecting and using
performance data to improve system performance.

For detailed information about CL commands, see:

Programming Reference Summary, SX41-5720.

This manual provides quick reference information
about the structure of the AS/400 commands,
including syntax diagrams and error messages that
can be monitored. Summary charts, system values,
and DDS keywords for the AS/400 system are also
included.

CL Programming, SC41-5721.

This manual provides a comprehensive discussion
of AS/400 programming topics. Topics such as
program communication, working with objects and
libraries, creating CL programs and commands, and
developing applications are discussed.

CL Reference, SC41-5722.

This manual provides a description of the AS/400
control language (CL) commands. Each command
is described, including its syntax diagram,
parameters, default values, and keywords.

For more information about AS/400 utilities mentioned
in this guide, see:

DDS Reference, SC41-5712.

This manual provides a detailed description of the
entries and keywords needed to externally describe
database files and certain device files.

ADTS/400: Character Generator Utility, SC09-1769.

This manual provides information about using the
character generator utility (CGU) to create and
maintain a double-byte character set on the AS/400
system.

ADTS/400: Programming Development Manager,
SC09-1771.

This manual provides information about using the
programming development manager (PDM) to work
with lists of libraries, objects, members, and
user-defined options.

ADTS/400: Screen Design Aid, SC09-1768.

This manual provides information about using the
screen design aid (SDA) to design, create, and
maintain display formats and menus.

ADTS/400: Source Entry Utility, SC09-1774.

This manual provides information about using the
source entry utility (SEU) to create and edit source
members.

For additional information on the SAA Procedures
Language, see:

SAA Common Programming Interface REXX Level
2 Reference, SC24-5549.

 Copyright IBM Corp. 1997 225

This manual may be useful to more experienced
REXX users who may want to code portable
programs. This manual defines the SAA
Procedures Language. Descriptions include the use
and syntax of the language as well as explanations
on how the language processor interprets the
language as a program is running.

SAA Common Programming Interface
Communications Reference, SC26-4399.

This manual will help you program with the CPI
Communications interface. It contains general-use
programming interfaces which let you write
programs that use the services of CPI
Communications.

National Language Support, SC41-5101.

This manual will help you plan and use the national
language support (NLS) function on the AS/400
system. It contains information on how to
understand the national language support concepts,
how to use national language support in a
multilingual environment, and how to write
internationalized applications in a multilingual
environment.

DB2 for AS/400 SQL Reference, SC41-5612.

This manual provides information about SQL/400
statements and their parameters. It also includes
an appendix describing the SQL communications
area (SQLCA) and SQL description area (SQLDA).

DB2 for AS/400 SQL Programming, SC41-5611.

This manual provides information about the
EXECSQL environment.

226 REXX/400 Programmer’s Guide V4R1

 Index

Special Characters
- tracing flag 128
+++ tracing flag 128
>.> tracing flag 128
>>> tracing flag 128
>C> tracing flag 129
>F> tracing flag 129
>L> tracing flag 129
>O> tracing flag 129
>P> tracing flag 129
>V> tracing flag 129

A
ABBREV function 74
Add REXX Buffer (ADDREXBUF) command 116,

119, 162, 170, 193, 202
ADDRESS function 80, 105
ADDRESS instruction 81
ADDREXBUF command 116, 119, 162, 170, 193,

202
AND operator 42
application program interfaces (APIs)

QREXQ 115, 180, 193, 199—205
QREXVAR 101, 185—192
QREXX 10, 12, 86

ARG instruction 19
arithmetic operators 32, 143
array

description 23
two dimensional 25
using compound symbols 23, 26

assignment
description 6

B
batch mode, SAY and PULL in 16
binary strings 111
book, purpose ix
books to read ix
branches 45
built-in functions

See functions, built-in

C
CALL command 79, 92, 178, 180, 183, 184, 191, 213
CALL instruction 26, 45, 79, 92, 100, 132, 135, 175
Call Program (CALL) command 79, 92, 178, 180,

183, 184, 191, 213

CCSID (coded character set identifier)
See coded character set identifier (CCSID)

CENTER function 74
CENTRE function 74
Change Command (CHGCMD) command 11
Change Variable (CHGVAR) command 59, 211, 212,

213, 215
CHGCMD command 11
CHGVAR command 59, 211, 212, 213, 215
CL (Control Language)

command environment 86
commands

See commands, CL
conditions 85
program boundaries, sensitivity to 91
replacing CL programs with REXX programs 59
variables, pseudo-CL

See pseudo-CL variables
clause

assignments 6
commands 8
instructions 6
interpretation 79
labels 7
null 5

clause interpretation 79
COBOL, using with REXX

pushing data to the external data queue 204
coded character set identifier (CCSID)

DBCS 141
SBCS 141
using TRACE 123
within REXX source file 17, 18

command environments
CL command environment 79, 86
CPICOMM 80, 95
description 79—95
user-defined command environments 80

commands, CL
*RTNVAL attribute 87
*VARY attribute 87
Add REXX Buffer (ADDREXBUF) 116, 119, 162,

170, 193, 202
Call Program (CALL) 79, 92, 178, 180, 183, 184,

191, 213
Change Command (CHGCMD) 11
Change Variable (CHGVAR) 59, 211, 212, 213,

215
command parameters 87
Create Command (CRTCMD) 11
Create Library (CRTLIB) 8
Create Source Physical File (CRTSRCPF) 8

 Copyright IBM Corp. 1997 227

commands, CL (continued)
Delete File (DLTF) 95
Display Library (DSPLIB) 8, 59
Display Library List (DSPLIBL) 81
program boundaries, sensitivity to 91
Receive Message (RCVMSG) 82, 88, 216
Remove Member (RMVM) 95
Remove REXX Buffer (RMVREXBUF) 116, 120,

163, 170, 193, 203
Retrieve Job Attributes (RTVJOBA) 91, 105
Start REXX Procedure (STRREXPRC) 10—11, 19,

80, 86, 92, 155, 206
Start Source Entry Utility (STRSEU) 79
Trace REXX (TRCREX) 129

commands, REXX
ADDRESS function 80
ADDRESS instruction 81
CL command environment 79, 86
conditions 81, 85
description 8, 79
environments

See command environments
errors 81, 131, 134
expressions as 44
messages 81
return codes 82

from CL command environment 82
from user-defined command environments 85

user-defined command environments 86
using 8, 79

COMPARE function 74
comparison operators

combining 43
description 39, 144
strict comparison 41

CONDITION function 133
condition trapping

CALL instruction 132
CL command environment, conditions from 85
CONDITION function 132, 133
definition 132
description 131—136
ERROR condition 85, 183, 184
FAILURE condition 85, 183, 184
SIGNAL instruction 132
SYNTAX condition 188
user-defined command environments, conditions

from 86
conditional loops

description 53
DO FOREVER instruction 54
DO UNTIL instruction 53
DO WHILE instruction 53
LEAVE instruction 55

conditions, looping with 53

contents of this book ix
control instructions

branches 45, 46—50
calls 45
description 45
exits 46
loops 45, 50—57
transfers of control 45

conversion functions 111
COPIES function 73
counters, looping with 51
CPICOMM command environment 80, 95
Create Command (CRTCMD) command 11
Create Library (CRTLIB) command 8
Create Source Physical File (CRTSRCPF)

command 8
CRTCMD command 11
CRTLIB command 8
CRTSRCPF command 8

D
data formats 111
data queue, external 115 —122
DATATYPE function 33, 54
DATE function 105
DBCS

See double-byte character sets
Delete File (DLTF) command 95
DELSTR function 73
DELWORD function 73
Display Library (DSPLIB) command 8, 59
Display Library List (DSPLIBL) command 81
DLTF command 95
DO instruction

with the END subkeyword 50
with the FOREVER subkeyword 54
with the UNTIL subkeyword 53
with the WHILE subkeyword 53

double-byte character sets
description 141
notational conventions 142
shift-in (SI) characters 142
shift-out (SO) characters 142

DSPLIB command 8, 59
DSPLIBL command 81

E
ERROR condition 85, 131, 134, 183, 184
ERRORTEXT function 105
EXECSQL command environment 80, 84, 86
EXIT instruction 46
exponential notation 34
expressions

as commands 44

228 REXX/400 Programmer’s Guide V4R1

expressions (continued)
description 31—44
in instructions 44
terms and operators 31

arithmetic operators 32, 143
comparison operators 39, 144
DATATYPE function 33
exponential notation 34
logical operators 41, 143
string operators 37, 143

external data queue
See data queue, external

external routines
written in other languages 101
written in REXX 101

F
FAILURE condition 85, 131, 183, 184
file input and output

See files, REXX
files, REXX

description 12
overriding 206—210

See also STDIN
See also STDOUT

FORMAT function 36, 105
function search order 103
functions

built-in
See functions, built-in

conversion 111
function calls as expressions 43
search order 103

functions and subroutines
description 99—113
differences between 100

functions, built-in
ABBREV 74
ADDRESS 80, 105
CENTER 74
CENTRE 74
COMPARE 74
CONDITION 133
COPIES 73
DATATYPE 33, 54
DATE 105
DELSTR 73
DELWORD 73
description 2, 104, 139
ERRORTEXT 105
FORMAT 36, 105
INSERT 73
LASTPOS 75
LEFT 72
LENGTH 74

functions, built-in (continued)
MAX 106
MIN 106
OVERLAY 73
POS 75
QUEUED 115
REVERSE 73
RIGHT 72
SETMSGRC 82, 85, 106
SOURCELINE 109
SPACE 73
STRING 72
STRIP 74
SUBWORD 73
SYMBOL 27
TIME 109
TRANSLATE 110
TRUNCATE 36
VERIFY 74, 110
WORD 73
WORDINDEX 75
WORDLENGTH 74
WORDPOS 75
WORDS 74

H
HALT condition 131, 132
hexadecimal strings 111

I
IF instruction 46
ILE Session Manager 12
ILE/C, REXX and

calling an ILE/C program from REXX 175
CALL command, with the CL 178
command environment, as an 176
external function, as an 176
external subroutine, as an 175

external data queue example 194
parameters, passing 179

CALL command, using 180
command environment, calling 180
external data queue, using 180
external subroutines and functions, calling 179

parameters, receiving 181
CALL command 183
command environments 182
external data queue, from the 183
external functions and subroutines 181

results and return codes, returning 184
CL command environment, returning results

from 191
external data queue, returning results from 193

 Index 229

input and output
See files, REXX

INSERT function 73
instructions

control 45
branches 45
calls 45
exits 46
loops 45, 50
transfers of control 45

description 6
expressions in 44
keyword 45
queue management 116

instructions, REXX
ADDRESS 81
ARG 19
CALL 26, 45, 79, 92, 100, 132, 135, 175
DO 50

DO FOREVER 54
DO UNTIL 53
DO WHILE 53

EXIT 46
IF 46
INTERPRET 58
ITERATE 55
LEAVE 55, 56
NOP 50
NUMERIC DIGITS 35
PARSE 61

PARSE ARG 62
PARSE LINEIN 63
PARSE PULL 62
PARSE SOURCE 64, 66
PARSE VALUE 63
PARSE VAR 63
PARSE VERSION 64, 67

PARSE UPPER PULL 115
PROCEDURE 27
PULL 14, 16, 19, 115, 119
PUSH 116
QUEUE 116—119
SAY 14, 16
SELECT 47
SIGNAL 132
TRACE 123

interactive mode, using SAY and PULL in 14
interfaces

See application program interfaces (APIs)
internal routines 100
INTERPRET instruction 58
interpreter rules 10
interpreter, starting REXX

See REXX interpreter, starting
ITERATE instruction 55

iterative loops 55

K
keyword instructions 45 —59

L
labels, description 7
LASTPOS 75
LEAVE instruction 55, 56
LEFT function 72
LENGTH function 74
logical operators 41, 143
loops

description 50—57
iterative and conditional 55
with conditions 53
with counters 51

M
MAX function 106
messages

CPICOMM 83
description 81
EXECSQL 84
status and notify 82

MIN function 106

N
National Language Character Set (NLCS) Support

bibliography 226
NLCS (National Language Character Set) Support

See National Language Character Set (NLCS)
Support

NOP instruction 50
NOT operator 43
notational convention, DBCS 142
NOVALUE condition 131, 134
null clause 5
NUMERIC DIGITS instruction 35

O
operators

arithmetic 32
comparison 39
definition 32
logical 41
priority of 32
string 37

OR operator 42
OVERLAY function 73

230 REXX/400 Programmer’s Guide V4R1

P
parameters, accessing 102
PARSE instruction

description 61
PARSE ARG 62
PARSE LINEIN 63
PARSE PULL 62
PARSE SOURCE 64, 66
PARSE VALUE 63
PARSE VAR 63
PARSE VERSION 64, 67

parsing
description 61—72
in a program 68
patterns 69

literal 69
positional 70
variables 71

variables and expressions 65
POS 75
positional patterns 70
Preface ix
PROCEDURE instruction 27
programming interfaces

See application program interfaces (APIs)
pseudo-CL variables

control, passing
See ILE/C, REXX and, parameters, passing

description 88—91, 178, 184, 191
naming 88

PULL instruction
description 14, 19
in batch mode 16
in interactive mode 14
input from external data queue 14
input from STDIN 14

purpose of this book ix

Q
QREXQ 115, 180, 193, 199—205
QREXSRC 8, 19, 101, 103

special 26
RC 26
RESULT 26
SIGL 26

QREXVAR 101, 185—192
QREXX 10, 12, 86
qualifications for learning REXX ix
queue management instructions

PULL 119
PUSH 116
QUEUE 116—119

R
RCVMSG command 82, 88, 216
Receive Message (RCVMSG) command 82, 88, 216
related printed information 225
Remove Member (RMVM) command 95
Remove REXX Buffer (RMVREXBUF) command

description 116, 120, 193
example 163, 170, 203

Retrieve Job Attributes (RTVJOBA) command 91,
105

return codes
description 82
from CL command environment 82
from user-defined command environments 85
SETMSGRC function 82, 85, 106

returning results 103
REVERSE function 73
REXX files

See files, REXX
REXX instructions

See instructions, REXX
REXX interpreter, starting

from a program 12
RIGHT function 72
RMVM command 95
RMVREXBUF command

See Remove REXX Buffer (RMVREXBUF) command
rounding and truncation 36
RPG, using with REXX

pushing data to the external data queue 199
updating data from the external data queue 200

RTVJOBA command 91, 105

S
SAA

See Systems Application Architecture (SAA)
SAY instruction

description 14
in batch mode 16
in interactive mode 14
output to STDOUT 14

SELECT 58
SELECT instruction 47, 58
SETMSGRC function 82, 85, 106
shift-in (SI) characters 142
shift-out (SO) characters 142
SIGNAL instruction 132
source entry

creating a library 8
creating a source physical file 8
interpreted by REXX 10
QREXSRC 8, 19, 101, 103
using REXX programs 9
using REXX source type 9

 Index 231

source entry (continued)
using source entry utility (SEU) 8

SOURCELINE function 109
SPACE function 73
Start REXX Procedure (STRREXPRC) command

description 10—11, 19, 80, 86, 92, 206
example 155

Start Source Entry Utility (STRSEU) command 79
starting the REXX interpreter

See REXX interpreter, starting
STDERR

description 12
TRACE instruction, output from 128

STDIN
description 12
external data queue 62, 63
ILE Session Manager 12
in batch mode 16
in interactive mode 14
interactive tracing 124
overriding 118, 124, 206—210
PARSE LINEIN instruction 63
PARSE PULL instruction 62
PARSE UPPER LINEIN instruction 119
PARSE UPPER PULL instruction 115
parsing, input for 61
PULL instruction 115, 122

STDOUT
DBCS output 141
description 12
ILE Session Manager 12
in batch mode 16
in interactive mode 14
overriding 162, 206—210
SAY instruction 20
variables 20

string functions
description 72
editing 73

COPIES 73
DELSTR 73
DELWORD 73
INSERT 73
OVERLAY 73
REVERSE 73

formatting 73
CENTER 74
CENTRE 74
SPACE 73
STRIP 74

LENGTH 74
strings, hexadecimal and binary 111
SUBSTRING function 72

LEFT 72
RIGHT 72
SUBWORD 73
WORD 73

string functions (continued)
WORDLENGTH 74
WORDS 74

string operators 37, 143
string, REXX versus CL

concatenation with numeric variables 213
extracting words from a string 211
searching for a string pattern 211

STRIP function 74
STRREXPRC command

See Start REXX Procedure (STRREXPRC)
command

STRSEU command 79
structured programming 45
subkeywords

of DO instruction 45
of IF instruction 46
of SELECT instruction 47

SUBWORD function 73
symbol

compound 20
constants 17
defining 17
TRACE 128
variables 17

SYMBOL function 27
SYNTAX condition 131, 132, 133, 188
Systems Application Architecture (SAA) 2, 226

T
terms, kinds of 31
things you need ix
TIME function 109
TRACE instruction 123
Trace REXX (TRCREX) command 129
tracing

description 123—129
interactive tracing 124, 206
STDERR 12, 128
TRACE instruction 20
TRACE instruction, example of 147, 173
trace options 124

errors 123, 126
intermediates 123, 124
normal 123, 125
results 123, 125

trace results, interpreting 128
Trace REXX (TRCREX) command 129
trace settings 124
tracing flags

- 128
+++ 128
>.> 128
>>> 128
>C> 129
>F> 129

232 REXX/400 Programmer’s Guide V4R1

tracing (continued)
tracing flags (continued)

>L> 129
>O> 129
>P> 129
>V> 129

TRANSLATE built-in 110
trapping, condition 131
TRCREX Command 129
TRUNCATE function 36

V
variables

arrays 23
assigning 18

expression results 19
from user inputs 19

compound symbols 20
concatenation with numeric variables 213
derived names 21
description 17—30
displaying value 20
errors 134
naming 18
parsing 64, 65
patterns 71
pseudo-CL

See pseudo-CL variables
VERIFY function 74, 110

W
who should read this book ix
WORD function 73
WORDINDEX 75
WORDLENGTH function 74
WORDPOS 75
WORDS function 74

 Index 233

Reader Comments—We'd Like to Hear from You!

AS/400 Advanced Series
REXX/400 Programmer’s Guide
Version 4

Publication No. SC41-5728-00

Overall, how would you rate this manual?

Very
Satisfied Satisfied Dissatisfied Very

Dissatisfied

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

T H A N K Y O U !

Please tell us how we can improve this manual:

May we contact you to discuss your responses? __ Yes __ No
Phone: (____) ___________ Fax: (____) ___________ Internet: ___________

To return this form:

 � Mail it
 � Fax it

United States and Canada: 800+937-3430
 Other countries: (+1)+507+253-5192
� Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader Comments—We'd Like to Hear from You!
SC41-5728-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN DEPT 542 IDCLERK
IBM CORPORATION
3605 HWY 52 N
ROCHESTER MN 55901-9986

Fold and Tape Please do not staple Fold and Tape

SC41-5728-00

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC41-5728-ðð

Spine information:

IBM AS/400 Advanced Series REXX/400 Programmer’s Guide Version 4

